基于遗传算法的认知无线网络虚警概率和检测概率优化

S. Bhattacharjee, P. Das, S. Mandal, B. Sardar
{"title":"基于遗传算法的认知无线网络虚警概率和检测概率优化","authors":"S. Bhattacharjee, P. Das, S. Mandal, B. Sardar","doi":"10.1109/ReTIS.2015.7232852","DOIUrl":null,"url":null,"abstract":"In this paper, we optimize probability of detection and probability of false alarm in cognitive radio network to minimize probability of error of a particular SU in a centralized cognitive radio network using Genetic algorithm (GA). Our objective is to minimize probability of error and find out optimum values of probability of occupancy detection or probability of detection and probability of false alarm. We use Genetic Algorithm to solve this optimization problem. The result is compared with Differential Evolution algorithm and it is evident from the comparison that DE finds better solution and takes much lesser number of evaluations to find optimum solution.","PeriodicalId":161306,"journal":{"name":"2015 IEEE 2nd International Conference on Recent Trends in Information Systems (ReTIS)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Optimization of probability of false alarm and probability of detection in cognitive radio networks using GA\",\"authors\":\"S. Bhattacharjee, P. Das, S. Mandal, B. Sardar\",\"doi\":\"10.1109/ReTIS.2015.7232852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we optimize probability of detection and probability of false alarm in cognitive radio network to minimize probability of error of a particular SU in a centralized cognitive radio network using Genetic algorithm (GA). Our objective is to minimize probability of error and find out optimum values of probability of occupancy detection or probability of detection and probability of false alarm. We use Genetic Algorithm to solve this optimization problem. The result is compared with Differential Evolution algorithm and it is evident from the comparison that DE finds better solution and takes much lesser number of evaluations to find optimum solution.\",\"PeriodicalId\":161306,\"journal\":{\"name\":\"2015 IEEE 2nd International Conference on Recent Trends in Information Systems (ReTIS)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 2nd International Conference on Recent Trends in Information Systems (ReTIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ReTIS.2015.7232852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 2nd International Conference on Recent Trends in Information Systems (ReTIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ReTIS.2015.7232852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

本文利用遗传算法优化认知无线网络的检测概率和虚警概率,以最小化集中式认知无线网络中特定SU的错误概率。我们的目标是最小化误差概率,找出占用检测概率或检测概率和虚警概率的最优值。我们使用遗传算法来解决这个优化问题。将结果与差分进化算法进行了比较,结果表明,差分进化算法能找到更好的解,且求优次数要少得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of probability of false alarm and probability of detection in cognitive radio networks using GA
In this paper, we optimize probability of detection and probability of false alarm in cognitive radio network to minimize probability of error of a particular SU in a centralized cognitive radio network using Genetic algorithm (GA). Our objective is to minimize probability of error and find out optimum values of probability of occupancy detection or probability of detection and probability of false alarm. We use Genetic Algorithm to solve this optimization problem. The result is compared with Differential Evolution algorithm and it is evident from the comparison that DE finds better solution and takes much lesser number of evaluations to find optimum solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信