未来逻辑缩放:走向原子通道和解构芯片

S. Samavedam, J. Ryckaert, E. Beyne, K. Ronse, N. Horiguchi, Z. Tokei, I. Radu, M. Bardon, M. Na, A. Spessot, S. Biesemans
{"title":"未来逻辑缩放:走向原子通道和解构芯片","authors":"S. Samavedam, J. Ryckaert, E. Beyne, K. Ronse, N. Horiguchi, Z. Tokei, I. Radu, M. Bardon, M. Na, A. Spessot, S. Biesemans","doi":"10.1109/IEDM13553.2020.9372023","DOIUrl":null,"url":null,"abstract":"With each new node, cost and complexity of logic technology increases while being challenged to provide the historical expected improvement in performance. This paper reviews the latest trends and advances in technology to enable logic scaling. Dimensional scaling, enabled by EUV lithography, will continue with advances in multi-patterning. Higher costs of EUV multi-patterning will be mitigated by high (0.55) numerical aperture (NA) EUV simplifying the patterning and potentially leading to higher yield. Logic standard cell scaling below 6-track (6T) with adequate drive current per footprint will require adoption of Gate-All-Around (GAA) device architectures, like nanosheets, along with scaling boosters like buried power rails (BPR) and semi-damascene metal integration scheme with air-gaps. Scaling below 5-track (5T) will require new compact device architectures like complementary FETs (CFETs) and alternate intra-cell interconnect layouts. Slowing SRAM scaling can also benefit from migration to BPR, forksheets and CFETs. Channels formed from 2D materials can theoretically enable gate length (Lg) and contacted poly pitch (CPP) scaling. Several new material innovations will be needed to enable 2D atomic channel transistors. Changing our view from circuits to systems, 3D integration techniques will continue to enable subsystem scaling like cache partitioning of SoCs to improve memory access. Finally, a methodology to estimate the environmental impact of technology scaling choices is proposed.","PeriodicalId":415186,"journal":{"name":"2020 IEEE International Electron Devices Meeting (IEDM)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Future Logic Scaling: Towards Atomic Channels and Deconstructed Chips\",\"authors\":\"S. Samavedam, J. Ryckaert, E. Beyne, K. Ronse, N. Horiguchi, Z. Tokei, I. Radu, M. Bardon, M. Na, A. Spessot, S. Biesemans\",\"doi\":\"10.1109/IEDM13553.2020.9372023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With each new node, cost and complexity of logic technology increases while being challenged to provide the historical expected improvement in performance. This paper reviews the latest trends and advances in technology to enable logic scaling. Dimensional scaling, enabled by EUV lithography, will continue with advances in multi-patterning. Higher costs of EUV multi-patterning will be mitigated by high (0.55) numerical aperture (NA) EUV simplifying the patterning and potentially leading to higher yield. Logic standard cell scaling below 6-track (6T) with adequate drive current per footprint will require adoption of Gate-All-Around (GAA) device architectures, like nanosheets, along with scaling boosters like buried power rails (BPR) and semi-damascene metal integration scheme with air-gaps. Scaling below 5-track (5T) will require new compact device architectures like complementary FETs (CFETs) and alternate intra-cell interconnect layouts. Slowing SRAM scaling can also benefit from migration to BPR, forksheets and CFETs. Channels formed from 2D materials can theoretically enable gate length (Lg) and contacted poly pitch (CPP) scaling. Several new material innovations will be needed to enable 2D atomic channel transistors. Changing our view from circuits to systems, 3D integration techniques will continue to enable subsystem scaling like cache partitioning of SoCs to improve memory access. Finally, a methodology to estimate the environmental impact of technology scaling choices is proposed.\",\"PeriodicalId\":415186,\"journal\":{\"name\":\"2020 IEEE International Electron Devices Meeting (IEDM)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Electron Devices Meeting (IEDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM13553.2020.9372023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM13553.2020.9372023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着每个新节点的出现,逻辑技术的成本和复杂性都在增加,同时也面临着提供历史预期性能改进的挑战。本文综述了实现逻辑标度的最新趋势和技术进展。由EUV光刻技术实现的尺寸缩放将随着多图案化技术的进步而继续发展。高(0.55)数值孔径(NA)的EUV可以降低EUV多图案化的高成本,从而简化图案化并可能导致更高的成品率。具有足够驱动电流的6轨(6T)以下的逻辑标准单元缩放需要采用栅极全能(GAA)器件架构,如纳米片,以及埋地电源轨(BPR)和带气隙的半damascene金属集成方案等缩放助推器。5轨(5T)以下的扩展将需要新的紧凑型器件架构,如互补场效应管(cfet)和备用单元内互连布局。减缓SRAM扩展也可以从迁移到BPR、forksheet和CFETs中受益。由二维材料形成的通道理论上可以实现栅极长度(Lg)和接触多间距(CPP)缩放。要实现二维原子通道晶体管,需要几种新的材料创新。将我们的观点从电路转变为系统,3D集成技术将继续使子系统扩展,如soc的缓存分区,以改善内存访问。最后,提出了一种评估技术规模选择对环境影响的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Future Logic Scaling: Towards Atomic Channels and Deconstructed Chips
With each new node, cost and complexity of logic technology increases while being challenged to provide the historical expected improvement in performance. This paper reviews the latest trends and advances in technology to enable logic scaling. Dimensional scaling, enabled by EUV lithography, will continue with advances in multi-patterning. Higher costs of EUV multi-patterning will be mitigated by high (0.55) numerical aperture (NA) EUV simplifying the patterning and potentially leading to higher yield. Logic standard cell scaling below 6-track (6T) with adequate drive current per footprint will require adoption of Gate-All-Around (GAA) device architectures, like nanosheets, along with scaling boosters like buried power rails (BPR) and semi-damascene metal integration scheme with air-gaps. Scaling below 5-track (5T) will require new compact device architectures like complementary FETs (CFETs) and alternate intra-cell interconnect layouts. Slowing SRAM scaling can also benefit from migration to BPR, forksheets and CFETs. Channels formed from 2D materials can theoretically enable gate length (Lg) and contacted poly pitch (CPP) scaling. Several new material innovations will be needed to enable 2D atomic channel transistors. Changing our view from circuits to systems, 3D integration techniques will continue to enable subsystem scaling like cache partitioning of SoCs to improve memory access. Finally, a methodology to estimate the environmental impact of technology scaling choices is proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信