基于深度强化学习的无人机切换决策

Y. Jang, S. M. Raza, Hyunseung Choo, Moonseong Kim
{"title":"基于深度强化学习的无人机切换决策","authors":"Y. Jang, S. M. Raza, Hyunseung Choo, Moonseong Kim","doi":"10.1109/IMCOM53663.2022.9721627","DOIUrl":null,"url":null,"abstract":"Cellular networks provide the necessary connectivity to the Unmanned Aerial Vehicles (UAV), however, these net- works are primarily designed for ground users. The in place handover decision mechanism for ground users is inappropriate for UAV due to frequent fluctuations in signal strength. This paper proposes a Deep Reinforcement Learning (DRL) based UAV Handover Decision (UHD) scheme to determine when it is essential for UAV to execute the handover for maintaining stable connectivity. DRL framework uses Proximal Policy Optimization algorithm to dynamically learn the UHD in an emulated 3D UAV mobility environment to manage the handover decisions. Experimental results show that UHD reduces handovers up to 76% and 73% comparing to conventional and target methods, respectively, while maintaining signal strength for stable and reliable communication.","PeriodicalId":367038,"journal":{"name":"2022 16th International Conference on Ubiquitous Information Management and Communication (IMCOM)","volume":"186 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"UAVs Handover Decision using Deep Reinforcement Learning\",\"authors\":\"Y. Jang, S. M. Raza, Hyunseung Choo, Moonseong Kim\",\"doi\":\"10.1109/IMCOM53663.2022.9721627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cellular networks provide the necessary connectivity to the Unmanned Aerial Vehicles (UAV), however, these net- works are primarily designed for ground users. The in place handover decision mechanism for ground users is inappropriate for UAV due to frequent fluctuations in signal strength. This paper proposes a Deep Reinforcement Learning (DRL) based UAV Handover Decision (UHD) scheme to determine when it is essential for UAV to execute the handover for maintaining stable connectivity. DRL framework uses Proximal Policy Optimization algorithm to dynamically learn the UHD in an emulated 3D UAV mobility environment to manage the handover decisions. Experimental results show that UHD reduces handovers up to 76% and 73% comparing to conventional and target methods, respectively, while maintaining signal strength for stable and reliable communication.\",\"PeriodicalId\":367038,\"journal\":{\"name\":\"2022 16th International Conference on Ubiquitous Information Management and Communication (IMCOM)\",\"volume\":\"186 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 16th International Conference on Ubiquitous Information Management and Communication (IMCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMCOM53663.2022.9721627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 16th International Conference on Ubiquitous Information Management and Communication (IMCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCOM53663.2022.9721627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

蜂窝网络为无人机(UAV)提供必要的连接,然而,这些网络主要是为地面用户设计的。地面用户的原地切换决策机制由于信号强度的频繁波动而不适用于无人机。本文提出了一种基于深度强化学习(DRL)的无人机切换决策(UHD)方案,以确定无人机何时需要执行切换以保持稳定的连通性。DRL框架采用近端策略优化算法,在仿真的三维无人机移动环境中动态学习UHD,对切换决策进行管理。实验结果表明,与传统方法和目标方法相比,UHD分别减少了76%和73%的切换,同时保持了稳定可靠的通信信号强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UAVs Handover Decision using Deep Reinforcement Learning
Cellular networks provide the necessary connectivity to the Unmanned Aerial Vehicles (UAV), however, these net- works are primarily designed for ground users. The in place handover decision mechanism for ground users is inappropriate for UAV due to frequent fluctuations in signal strength. This paper proposes a Deep Reinforcement Learning (DRL) based UAV Handover Decision (UHD) scheme to determine when it is essential for UAV to execute the handover for maintaining stable connectivity. DRL framework uses Proximal Policy Optimization algorithm to dynamically learn the UHD in an emulated 3D UAV mobility environment to manage the handover decisions. Experimental results show that UHD reduces handovers up to 76% and 73% comparing to conventional and target methods, respectively, while maintaining signal strength for stable and reliable communication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信