{"title":"基于熵距的snp聚类分析及SVM哮喘类型预测","authors":"Jungseob Lee, Ki-Seob Shin, K. Wee","doi":"10.3745/KIPSTB.2011.18B.2.067","DOIUrl":null,"url":null,"abstract":"Single nucleotide polymorphisms (SNPs) are a very important tool for the study of human genome structure. Cluster analysis of the large amount of gene expression data is useful for identifying biologically relevant groups of genes and for generating networks of gene-gene interactions. In this paper we compared the clusters of SNPs within asthma group and normal control group obtained by using hierarchical cluster analysis method with entropy distance. It appears that the 5-cluster collections of the two groups are significantly different. We searched the best set of SNPs that are useful for diagnosing the two types of asthma using representative SNPs of the clusters of the asthma group. Here support vector machines are used to evaluate the prediction accuracy of the selected combinations. The best combination model turns out to be the five-locus SNPs including one on the gene ALOX12 and their accuracy in predicting aspirin tolerant asthma disease risk among asthmatic patients is 66.41%.","PeriodicalId":122700,"journal":{"name":"The Kips Transactions:partb","volume":"28 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cluster Analysis of SNPs with Entropy Distance and Prediction of Asthma Type Using SVM\",\"authors\":\"Jungseob Lee, Ki-Seob Shin, K. Wee\",\"doi\":\"10.3745/KIPSTB.2011.18B.2.067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single nucleotide polymorphisms (SNPs) are a very important tool for the study of human genome structure. Cluster analysis of the large amount of gene expression data is useful for identifying biologically relevant groups of genes and for generating networks of gene-gene interactions. In this paper we compared the clusters of SNPs within asthma group and normal control group obtained by using hierarchical cluster analysis method with entropy distance. It appears that the 5-cluster collections of the two groups are significantly different. We searched the best set of SNPs that are useful for diagnosing the two types of asthma using representative SNPs of the clusters of the asthma group. Here support vector machines are used to evaluate the prediction accuracy of the selected combinations. The best combination model turns out to be the five-locus SNPs including one on the gene ALOX12 and their accuracy in predicting aspirin tolerant asthma disease risk among asthmatic patients is 66.41%.\",\"PeriodicalId\":122700,\"journal\":{\"name\":\"The Kips Transactions:partb\",\"volume\":\"28 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Kips Transactions:partb\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3745/KIPSTB.2011.18B.2.067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Kips Transactions:partb","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3745/KIPSTB.2011.18B.2.067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cluster Analysis of SNPs with Entropy Distance and Prediction of Asthma Type Using SVM
Single nucleotide polymorphisms (SNPs) are a very important tool for the study of human genome structure. Cluster analysis of the large amount of gene expression data is useful for identifying biologically relevant groups of genes and for generating networks of gene-gene interactions. In this paper we compared the clusters of SNPs within asthma group and normal control group obtained by using hierarchical cluster analysis method with entropy distance. It appears that the 5-cluster collections of the two groups are significantly different. We searched the best set of SNPs that are useful for diagnosing the two types of asthma using representative SNPs of the clusters of the asthma group. Here support vector machines are used to evaluate the prediction accuracy of the selected combinations. The best combination model turns out to be the five-locus SNPs including one on the gene ALOX12 and their accuracy in predicting aspirin tolerant asthma disease risk among asthmatic patients is 66.41%.