电池储能系统在线估计算法的比较分析

N. Michailidis, N. Bezas, G. S. Misyris, D. Doukas, D. Labridis, A. Marinopoulos
{"title":"电池储能系统在线估计算法的比较分析","authors":"N. Michailidis, N. Bezas, G. S. Misyris, D. Doukas, D. Labridis, A. Marinopoulos","doi":"10.1109/ISGTEurope.2017.8260201","DOIUrl":null,"url":null,"abstract":"Reliability of battery energy storage systems (BESS) used for online applications, such as electric vehicles and smart grid, depends heavily on the accuracy and rapidness of the state of charge (SOC) estimation. Moreover, to achieve a robust SOC estimation, the battery model parameter identification process is of significant importance. This paper examines a combination of the adaptive unscented Kalman filter (AUKF) and the fast upper diagonal recursive least square (FUDRLS) for the parameter identification and SOC estimation processes, respectively. The analysis focuses on on-line applications and the results are compared with previous work. Experimental validation based on various setups and load conditions is conducted, whereas the advantages of the proposed combination are highlighted.","PeriodicalId":345050,"journal":{"name":"2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparative analysis of online estimation algorithms for battery energy storage systems\",\"authors\":\"N. Michailidis, N. Bezas, G. S. Misyris, D. Doukas, D. Labridis, A. Marinopoulos\",\"doi\":\"10.1109/ISGTEurope.2017.8260201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reliability of battery energy storage systems (BESS) used for online applications, such as electric vehicles and smart grid, depends heavily on the accuracy and rapidness of the state of charge (SOC) estimation. Moreover, to achieve a robust SOC estimation, the battery model parameter identification process is of significant importance. This paper examines a combination of the adaptive unscented Kalman filter (AUKF) and the fast upper diagonal recursive least square (FUDRLS) for the parameter identification and SOC estimation processes, respectively. The analysis focuses on on-line applications and the results are compared with previous work. Experimental validation based on various setups and load conditions is conducted, whereas the advantages of the proposed combination are highlighted.\",\"PeriodicalId\":345050,\"journal\":{\"name\":\"2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGTEurope.2017.8260201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTEurope.2017.8260201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

用于电动汽车和智能电网等在线应用的电池储能系统(BESS)的可靠性在很大程度上取决于荷电状态(SOC)估计的准确性和快速性。此外,为了实现稳健的电池荷电状态估计,电池模型参数辨识过程至关重要。本文研究了自适应无气味卡尔曼滤波(AUKF)和快速上对角递推最小二乘(FUDRLS)的组合,分别用于参数识别和SOC估计过程。分析的重点是在线应用,并与以往的工作结果进行了比较。基于各种设置和负载条件进行了实验验证,并突出了所提出组合的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative analysis of online estimation algorithms for battery energy storage systems
Reliability of battery energy storage systems (BESS) used for online applications, such as electric vehicles and smart grid, depends heavily on the accuracy and rapidness of the state of charge (SOC) estimation. Moreover, to achieve a robust SOC estimation, the battery model parameter identification process is of significant importance. This paper examines a combination of the adaptive unscented Kalman filter (AUKF) and the fast upper diagonal recursive least square (FUDRLS) for the parameter identification and SOC estimation processes, respectively. The analysis focuses on on-line applications and the results are compared with previous work. Experimental validation based on various setups and load conditions is conducted, whereas the advantages of the proposed combination are highlighted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信