移动机器人定位故障检测的顺序决策方法

Liangxu Sun, Meng-Zhuo Liu, Huayi Zhan, Yingie Wu
{"title":"移动机器人定位故障检测的顺序决策方法","authors":"Liangxu Sun, Meng-Zhuo Liu, Huayi Zhan, Yingie Wu","doi":"10.1109/iv51971.2022.9827393","DOIUrl":null,"url":null,"abstract":"Many methods in mobile robotics usually utilize current sensor measurement to evaluate the localization performance of robots, for example in scan matching and particle filter methods. This immediately detecting methodology tend to cause a problem that a well-localization robot obtains a poor sensor measurement, the robot may mistake momentary observation noise for a localization failure. In this paper, we propose a new robot localization fault detection method for resolving this problem. We model robot localization fault detection as a sequential decision-making problem, where the decision of detecting a localization failure is based on a long-term sensor measurements. We employ two parameters of false-positive and false-negative observation error probabilities, which can eliminate the influence of noisy observations. Further, the proposed method derives Bayesian update equations for the integration of a long-term observations and presents an analytic formula representing the belief function of the reliability of localization results. Experimental studies validate the effectiveness of the proposed method.","PeriodicalId":184622,"journal":{"name":"2022 IEEE Intelligent Vehicles Symposium (IV)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Sequential Decision-theoretic Method for Detecting Mobile Robots Localization Failures\",\"authors\":\"Liangxu Sun, Meng-Zhuo Liu, Huayi Zhan, Yingie Wu\",\"doi\":\"10.1109/iv51971.2022.9827393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many methods in mobile robotics usually utilize current sensor measurement to evaluate the localization performance of robots, for example in scan matching and particle filter methods. This immediately detecting methodology tend to cause a problem that a well-localization robot obtains a poor sensor measurement, the robot may mistake momentary observation noise for a localization failure. In this paper, we propose a new robot localization fault detection method for resolving this problem. We model robot localization fault detection as a sequential decision-making problem, where the decision of detecting a localization failure is based on a long-term sensor measurements. We employ two parameters of false-positive and false-negative observation error probabilities, which can eliminate the influence of noisy observations. Further, the proposed method derives Bayesian update equations for the integration of a long-term observations and presents an analytic formula representing the belief function of the reliability of localization results. Experimental studies validate the effectiveness of the proposed method.\",\"PeriodicalId\":184622,\"journal\":{\"name\":\"2022 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iv51971.2022.9827393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iv51971.2022.9827393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

移动机器人中的许多方法通常使用电流传感器测量来评估机器人的定位性能,例如扫描匹配和粒子滤波方法。这种即时检测方法容易导致定位良好的机器人获得较差的传感器测量结果,机器人可能将瞬时观测噪声误认为定位失败。本文提出了一种新的机器人定位故障检测方法来解决这一问题。我们将机器人定位故障检测建模为一个顺序决策问题,其中定位故障检测的决策是基于长期的传感器测量。我们采用假正和假负观测误差概率两个参数,可以消除观测噪声的影响。此外,该方法推导了长期观测积分的贝叶斯更新方程,并给出了表示定位结果可靠性信念函数的解析公式。实验研究验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Sequential Decision-theoretic Method for Detecting Mobile Robots Localization Failures
Many methods in mobile robotics usually utilize current sensor measurement to evaluate the localization performance of robots, for example in scan matching and particle filter methods. This immediately detecting methodology tend to cause a problem that a well-localization robot obtains a poor sensor measurement, the robot may mistake momentary observation noise for a localization failure. In this paper, we propose a new robot localization fault detection method for resolving this problem. We model robot localization fault detection as a sequential decision-making problem, where the decision of detecting a localization failure is based on a long-term sensor measurements. We employ two parameters of false-positive and false-negative observation error probabilities, which can eliminate the influence of noisy observations. Further, the proposed method derives Bayesian update equations for the integration of a long-term observations and presents an analytic formula representing the belief function of the reliability of localization results. Experimental studies validate the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信