基于双变量随机优势的风险分配

Octave Jokung
{"title":"基于双变量随机优势的风险分配","authors":"Octave Jokung","doi":"10.2139/ssrn.1550225","DOIUrl":null,"url":null,"abstract":"This paper extends to bivariate utility functions, Eeckhoudt et al.’s (2009) result for the combination of ‘bad’ and ‘good’. The decision-maker prefers to get some of the ‘good’ and some of the ‘bad’ to taking a chance on all the ‘good’ or all the ‘bad’ where ‘bad’ is defined via (N,M)-increasing concave order. We generalize the concept of bivariate risk aversion introduced by Richard (1975) to higher orders. Importantly, in the bivariate framework, preference for the lottery [(X,T);(Y,Z)] to the lottery [(X,Z);(Y,T)] when (X,Z) dominates (Y,T) via (N,M)-increasing concave order allows us to assert bivariate risk apportionment of order (N,M) and to extend the concept of risk apportionment defined by Eeckhoudt and Schlesinger (2006).","PeriodicalId":207453,"journal":{"name":"ERN: Econometric Modeling in Microeconomics (Topic)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Risk Apportionment Via Bivariate Stochastic Dominance\",\"authors\":\"Octave Jokung\",\"doi\":\"10.2139/ssrn.1550225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper extends to bivariate utility functions, Eeckhoudt et al.’s (2009) result for the combination of ‘bad’ and ‘good’. The decision-maker prefers to get some of the ‘good’ and some of the ‘bad’ to taking a chance on all the ‘good’ or all the ‘bad’ where ‘bad’ is defined via (N,M)-increasing concave order. We generalize the concept of bivariate risk aversion introduced by Richard (1975) to higher orders. Importantly, in the bivariate framework, preference for the lottery [(X,T);(Y,Z)] to the lottery [(X,Z);(Y,T)] when (X,Z) dominates (Y,T) via (N,M)-increasing concave order allows us to assert bivariate risk apportionment of order (N,M) and to extend the concept of risk apportionment defined by Eeckhoudt and Schlesinger (2006).\",\"PeriodicalId\":207453,\"journal\":{\"name\":\"ERN: Econometric Modeling in Microeconomics (Topic)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Econometric Modeling in Microeconomics (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1550225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Econometric Modeling in Microeconomics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1550225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

本文扩展到二元效用函数,Eeckhoudt等人(2009)对“坏”和“好”组合的结果。决策者更倾向于获得一些“好”和一些“坏”,而不是冒险获得所有“好”或所有“坏”,其中“坏”是通过(N,M)递增的凹顺序定义的。我们将Richard(1975)引入的二元风险规避概念推广到更高阶。重要的是,在二元框架中,当(X,Z)通过(N,M)增加凹阶支配(Y,T)时,对彩票[(X,T);(Y,Z)]的偏好使我们能够断言(N,M)阶的二元风险分配,并扩展Eeckhoudt和Schlesinger(2006)定义的风险分配概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Risk Apportionment Via Bivariate Stochastic Dominance
This paper extends to bivariate utility functions, Eeckhoudt et al.’s (2009) result for the combination of ‘bad’ and ‘good’. The decision-maker prefers to get some of the ‘good’ and some of the ‘bad’ to taking a chance on all the ‘good’ or all the ‘bad’ where ‘bad’ is defined via (N,M)-increasing concave order. We generalize the concept of bivariate risk aversion introduced by Richard (1975) to higher orders. Importantly, in the bivariate framework, preference for the lottery [(X,T);(Y,Z)] to the lottery [(X,Z);(Y,T)] when (X,Z) dominates (Y,T) via (N,M)-increasing concave order allows us to assert bivariate risk apportionment of order (N,M) and to extend the concept of risk apportionment defined by Eeckhoudt and Schlesinger (2006).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信