UTANSA:多语言恶意Web脚本检测的静态方法

Wei-qing Huang, Chenggang Jia, Min Yu, Gang Li, Chao Liu, Jianguo Jiang
{"title":"UTANSA:多语言恶意Web脚本检测的静态方法","authors":"Wei-qing Huang, Chenggang Jia, Min Yu, Gang Li, Chao Liu, Jianguo Jiang","doi":"10.1109/ISCC53001.2021.9631400","DOIUrl":null,"url":null,"abstract":"In order to detect malicious web scripts automatically, many detection methods using static features and machine learning are proposed. However, the existing detection methods can only detect web scripts of specific programming languages. This paper proposes the unified text features and abstract syntax tree(AST) node sequence features algorithm(UTANSA) that exploits the text feature classification method and AST node classification method, together with the corresponding unified method to enhance the generalization ability of the model. Through the algorithm, two unified approaches are proposed based on text features and AST node features respectively, so that the detection model can detect multi-language web scripts. We choose scripts written in the JavaScript(JS) and PHP languages for experimentation to evaluate our approach. The results show that the detection model trained with the proposed method has a similar detection effect as trained with only JS samples or PHP samples.","PeriodicalId":270786,"journal":{"name":"2021 IEEE Symposium on Computers and Communications (ISCC)","volume":"187 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"UTANSA: Static Approach for Multi-Language Malicious Web Scripts Detection\",\"authors\":\"Wei-qing Huang, Chenggang Jia, Min Yu, Gang Li, Chao Liu, Jianguo Jiang\",\"doi\":\"10.1109/ISCC53001.2021.9631400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to detect malicious web scripts automatically, many detection methods using static features and machine learning are proposed. However, the existing detection methods can only detect web scripts of specific programming languages. This paper proposes the unified text features and abstract syntax tree(AST) node sequence features algorithm(UTANSA) that exploits the text feature classification method and AST node classification method, together with the corresponding unified method to enhance the generalization ability of the model. Through the algorithm, two unified approaches are proposed based on text features and AST node features respectively, so that the detection model can detect multi-language web scripts. We choose scripts written in the JavaScript(JS) and PHP languages for experimentation to evaluate our approach. The results show that the detection model trained with the proposed method has a similar detection effect as trained with only JS samples or PHP samples.\",\"PeriodicalId\":270786,\"journal\":{\"name\":\"2021 IEEE Symposium on Computers and Communications (ISCC)\",\"volume\":\"187 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Symposium on Computers and Communications (ISCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCC53001.2021.9631400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC53001.2021.9631400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了自动检测恶意web脚本,提出了许多基于静态特征和机器学习的检测方法。然而,现有的检测方法只能检测特定编程语言的web脚本。本文提出了统一文本特征和抽象语法树(AST)节点序列特征算法(UTANSA),该算法利用文本特征分类方法和AST节点分类方法,并结合相应的统一方法来增强模型的泛化能力。通过算法,分别提出了基于文本特征和基于AST节点特征的两种统一方法,使检测模型能够检测多语言web脚本。我们选择用JavaScript(JS)和PHP语言编写的脚本进行实验,以评估我们的方法。结果表明,使用本文方法训练的检测模型与仅使用JS样本或PHP样本训练的检测模型具有相似的检测效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UTANSA: Static Approach for Multi-Language Malicious Web Scripts Detection
In order to detect malicious web scripts automatically, many detection methods using static features and machine learning are proposed. However, the existing detection methods can only detect web scripts of specific programming languages. This paper proposes the unified text features and abstract syntax tree(AST) node sequence features algorithm(UTANSA) that exploits the text feature classification method and AST node classification method, together with the corresponding unified method to enhance the generalization ability of the model. Through the algorithm, two unified approaches are proposed based on text features and AST node features respectively, so that the detection model can detect multi-language web scripts. We choose scripts written in the JavaScript(JS) and PHP languages for experimentation to evaluate our approach. The results show that the detection model trained with the proposed method has a similar detection effect as trained with only JS samples or PHP samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信