维基百科中位置自动识别方法的比较

D. Buscaldi, Paolo Rosso
{"title":"维基百科中位置自动识别方法的比较","authors":"D. Buscaldi, Paolo Rosso","doi":"10.1145/1316948.1316971","DOIUrl":null,"url":null,"abstract":"In this paper we compare two methods for the automatic identification of geographical articles in encyclopedic resources such as Wikipedia. The methods are a WordNet-based method that uses a set of keywords related to geographical places, and a multinomial Naïve Bayes classificator, trained over a randomly selected subset of the English Wikipedia. This task may be included into the broader task of Named Entity classification, a well-known problem in the field of Natural Language Processing. The experiments were carried out considering both the full text of the articles and only the definition of the entity being described in the article. The obtained results show that the information contained in the page templates and the category labels is more useful than the text of the articles.","PeriodicalId":167948,"journal":{"name":"Workshop on Geographic Information Retrieval","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"A comparison of methods for the automatic identification of locations in wikipedia\",\"authors\":\"D. Buscaldi, Paolo Rosso\",\"doi\":\"10.1145/1316948.1316971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we compare two methods for the automatic identification of geographical articles in encyclopedic resources such as Wikipedia. The methods are a WordNet-based method that uses a set of keywords related to geographical places, and a multinomial Naïve Bayes classificator, trained over a randomly selected subset of the English Wikipedia. This task may be included into the broader task of Named Entity classification, a well-known problem in the field of Natural Language Processing. The experiments were carried out considering both the full text of the articles and only the definition of the entity being described in the article. The obtained results show that the information contained in the page templates and the category labels is more useful than the text of the articles.\",\"PeriodicalId\":167948,\"journal\":{\"name\":\"Workshop on Geographic Information Retrieval\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Geographic Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1316948.1316971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Geographic Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1316948.1316971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文比较了维基百科等百科全书资源中地理条目自动识别的两种方法。这些方法是基于wordnet的方法,它使用一组与地理位置相关的关键字,以及一个多项式Naïve贝叶斯分类器,该分类器在随机选择的英文维基百科子集上进行训练。该任务可以包含在命名实体分类的更广泛的任务中,命名实体分类是自然语言处理领域的一个众所周知的问题。实验既考虑了文章的全文,也只考虑了文章中所描述的实体的定义。结果表明,页面模板和分类标签中包含的信息比文章文本更有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparison of methods for the automatic identification of locations in wikipedia
In this paper we compare two methods for the automatic identification of geographical articles in encyclopedic resources such as Wikipedia. The methods are a WordNet-based method that uses a set of keywords related to geographical places, and a multinomial Naïve Bayes classificator, trained over a randomly selected subset of the English Wikipedia. This task may be included into the broader task of Named Entity classification, a well-known problem in the field of Natural Language Processing. The experiments were carried out considering both the full text of the articles and only the definition of the entity being described in the article. The obtained results show that the information contained in the page templates and the category labels is more useful than the text of the articles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信