基于主动slam的机器人嗅探气体分布映射在线规划

Duddy Soegiarto, B. Trilaksono, W. Adiprawita, Egi Muhammad Idris, Y. P. Nugraha
{"title":"基于主动slam的机器人嗅探气体分布映射在线规划","authors":"Duddy Soegiarto, B. Trilaksono, W. Adiprawita, Egi Muhammad Idris, Y. P. Nugraha","doi":"10.1109/AGERS.2018.8554199","DOIUrl":null,"url":null,"abstract":"In this paper we develop Active SLAM-based on-line planning systems for mobile robot olfaction. This On-line planning system enables mobile robot olfaction to perform mapping tasks autonomously when a disaster occurs involving Chemical, Biological, Radiological or Nuclear (CBRN) materials. In this work the robot will be tasked with mapping gas distribution in contaminated unknown outdoor environments. Global and local planning is a major part of the on-line planning system. Global planning serves to provide global path planning and predict the best location to take measurements. The combination of frontier based exploration and Closest Location-Information Gain (CL-IG) methods is used to build global planning. Local planning controls robot navigation to avoid obstacles and evaluate every robot action when performing area coverage and gas distribution mapping. Local planning was developed using sensor path planning based on Bayesian Adaptive Exploration (BAE) and Vector Field Histograms (VFH) methods for obstacle avoidance. Online planning performance testing for robot navigation when exploring and mapping has been simulated using ROS, Gazebo and Rviz.","PeriodicalId":369244,"journal":{"name":"2018 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On-line Planning on Active SLAM-Based Robot Olfaction for Gas Distribution Mapping\",\"authors\":\"Duddy Soegiarto, B. Trilaksono, W. Adiprawita, Egi Muhammad Idris, Y. P. Nugraha\",\"doi\":\"10.1109/AGERS.2018.8554199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we develop Active SLAM-based on-line planning systems for mobile robot olfaction. This On-line planning system enables mobile robot olfaction to perform mapping tasks autonomously when a disaster occurs involving Chemical, Biological, Radiological or Nuclear (CBRN) materials. In this work the robot will be tasked with mapping gas distribution in contaminated unknown outdoor environments. Global and local planning is a major part of the on-line planning system. Global planning serves to provide global path planning and predict the best location to take measurements. The combination of frontier based exploration and Closest Location-Information Gain (CL-IG) methods is used to build global planning. Local planning controls robot navigation to avoid obstacles and evaluate every robot action when performing area coverage and gas distribution mapping. Local planning was developed using sensor path planning based on Bayesian Adaptive Exploration (BAE) and Vector Field Histograms (VFH) methods for obstacle avoidance. Online planning performance testing for robot navigation when exploring and mapping has been simulated using ROS, Gazebo and Rviz.\",\"PeriodicalId\":369244,\"journal\":{\"name\":\"2018 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AGERS.2018.8554199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AGERS.2018.8554199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文开发了基于主动slam的移动机器人嗅觉在线规划系统。当涉及化学、生物、放射或核(CBRN)材料的灾难发生时,该在线规划系统使移动机器人嗅觉能够自主执行测绘任务。在这项工作中,机器人的任务是绘制未知污染室外环境中的气体分布。全局和局部规划是在线规划系统的重要组成部分。全局规划用于提供全局路径规划和预测进行测量的最佳位置。结合基于边界的勘探和最近位置信息增益(CL-IG)方法构建全局规划。局部规划控制机器人导航以避开障碍物,并在进行区域覆盖和天然气分布测绘时评估机器人的每个动作。采用基于贝叶斯自适应探索(BAE)和矢量场直方图(VFH)的传感器路径规划方法进行局部规划,实现避障。利用ROS、Gazebo和Rviz模拟了机器人导航时的在线规划性能测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On-line Planning on Active SLAM-Based Robot Olfaction for Gas Distribution Mapping
In this paper we develop Active SLAM-based on-line planning systems for mobile robot olfaction. This On-line planning system enables mobile robot olfaction to perform mapping tasks autonomously when a disaster occurs involving Chemical, Biological, Radiological or Nuclear (CBRN) materials. In this work the robot will be tasked with mapping gas distribution in contaminated unknown outdoor environments. Global and local planning is a major part of the on-line planning system. Global planning serves to provide global path planning and predict the best location to take measurements. The combination of frontier based exploration and Closest Location-Information Gain (CL-IG) methods is used to build global planning. Local planning controls robot navigation to avoid obstacles and evaluate every robot action when performing area coverage and gas distribution mapping. Local planning was developed using sensor path planning based on Bayesian Adaptive Exploration (BAE) and Vector Field Histograms (VFH) methods for obstacle avoidance. Online planning performance testing for robot navigation when exploring and mapping has been simulated using ROS, Gazebo and Rviz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信