准确和高效的地图匹配具有挑战性的环境

Reham Mohamed, Heba Aly, M. Youssef
{"title":"准确和高效的地图匹配具有挑战性的环境","authors":"Reham Mohamed, Heba Aly, M. Youssef","doi":"10.1145/2666310.2666429","DOIUrl":null,"url":null,"abstract":"We present the SnapNet, a system that provides accurate real-time map matching for cellular-based trajectories. Such coarse-grained trajectories introduce new challenges to map matching including (1) input locations that are far from the actual road segment (errors in the orders of kilometers), (2) back-and-forth transitions, and (3) highly sparse input data. SnapNet addresses these challenges by applying extensive preprocessing steps to remove the noisy locations and to handle the data sparseness. At the core of SnapNet is a novel incremental HMM algorithm that combines digital map hints and a number of heuristics to reduce the noise and provide real-time estimation. Evaluation of SnapNet in different cities covering more than 100km distance shows that it can achieve more than 90% accuracy under noisy coarse-grained input location estimates. This maps to over 97% and 34% enhancement in precision and recall respectively when compared to traditional HMM map matching algorithms. Moreover, SnapNet has a low latency of 1.2ms per location estimate.","PeriodicalId":153031,"journal":{"name":"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Accurate and efficient map matching for challenging environments\",\"authors\":\"Reham Mohamed, Heba Aly, M. Youssef\",\"doi\":\"10.1145/2666310.2666429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the SnapNet, a system that provides accurate real-time map matching for cellular-based trajectories. Such coarse-grained trajectories introduce new challenges to map matching including (1) input locations that are far from the actual road segment (errors in the orders of kilometers), (2) back-and-forth transitions, and (3) highly sparse input data. SnapNet addresses these challenges by applying extensive preprocessing steps to remove the noisy locations and to handle the data sparseness. At the core of SnapNet is a novel incremental HMM algorithm that combines digital map hints and a number of heuristics to reduce the noise and provide real-time estimation. Evaluation of SnapNet in different cities covering more than 100km distance shows that it can achieve more than 90% accuracy under noisy coarse-grained input location estimates. This maps to over 97% and 34% enhancement in precision and recall respectively when compared to traditional HMM map matching algorithms. Moreover, SnapNet has a low latency of 1.2ms per location estimate.\",\"PeriodicalId\":153031,\"journal\":{\"name\":\"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2666310.2666429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2666310.2666429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

我们提出了SnapNet,这是一个为基于细胞的轨迹提供精确实时地图匹配的系统。这种粗粒度轨迹给地图匹配带来了新的挑战,包括:(1)远离实际道路段的输入位置(误差以公里为单位),(2)来回转换,以及(3)高度稀疏的输入数据。SnapNet通过应用广泛的预处理步骤来消除噪声位置并处理数据稀疏性,从而解决了这些挑战。SnapNet的核心是一种新的增量HMM算法,该算法结合了数字地图提示和一些启发式算法来减少噪声并提供实时估计。在100km以上距离的不同城市中对SnapNet的评估表明,在有噪声的粗粒度输入位置估计下,SnapNet的准确率可以达到90%以上。与传统的HMM地图匹配算法相比,该算法的准确率和召回率分别提高了97%和34%。此外,SnapNet具有每个位置估计1.2ms的低延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accurate and efficient map matching for challenging environments
We present the SnapNet, a system that provides accurate real-time map matching for cellular-based trajectories. Such coarse-grained trajectories introduce new challenges to map matching including (1) input locations that are far from the actual road segment (errors in the orders of kilometers), (2) back-and-forth transitions, and (3) highly sparse input data. SnapNet addresses these challenges by applying extensive preprocessing steps to remove the noisy locations and to handle the data sparseness. At the core of SnapNet is a novel incremental HMM algorithm that combines digital map hints and a number of heuristics to reduce the noise and provide real-time estimation. Evaluation of SnapNet in different cities covering more than 100km distance shows that it can achieve more than 90% accuracy under noisy coarse-grained input location estimates. This maps to over 97% and 34% enhancement in precision and recall respectively when compared to traditional HMM map matching algorithms. Moreover, SnapNet has a low latency of 1.2ms per location estimate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信