Yandong Wang, Xinyu Que, Weikuan Yu, Dror Goldenberg, Dhiraj Sehgal
{"title":"Hadoop加速通过网络悬浮合并","authors":"Yandong Wang, Xinyu Que, Weikuan Yu, Dror Goldenberg, Dhiraj Sehgal","doi":"10.1145/2063384.2063461","DOIUrl":null,"url":null,"abstract":"Hadoop is a popular open-source implementation of the MapReduce programming model for cloud computing. However, it faces a number of issues to achieve the best performance from the underlying system. These include a serialization barrier that delays the reduce phase, repetitive merges and disk access, and lack of capability to leverage latest high speed interconnects. We describe Hadoop-A, an acceleration framework that optimizes Hadoop with plugin components implemented in C++ for fast data movement, overcoming its existing limitations. A novel network-levitated merge algorithm is introduced to merge data without repetition and disk access. In addition, a full pipeline is designed to overlap the shuffle, merge and reduce phases. Our experimental results show that Hadoop-A doubles the data processing throughput of Hadoop, and reduces CPU utilization by more than 36%.","PeriodicalId":358797,"journal":{"name":"2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"123","resultStr":"{\"title\":\"Hadoop acceleration through network levitated merge\",\"authors\":\"Yandong Wang, Xinyu Que, Weikuan Yu, Dror Goldenberg, Dhiraj Sehgal\",\"doi\":\"10.1145/2063384.2063461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hadoop is a popular open-source implementation of the MapReduce programming model for cloud computing. However, it faces a number of issues to achieve the best performance from the underlying system. These include a serialization barrier that delays the reduce phase, repetitive merges and disk access, and lack of capability to leverage latest high speed interconnects. We describe Hadoop-A, an acceleration framework that optimizes Hadoop with plugin components implemented in C++ for fast data movement, overcoming its existing limitations. A novel network-levitated merge algorithm is introduced to merge data without repetition and disk access. In addition, a full pipeline is designed to overlap the shuffle, merge and reduce phases. Our experimental results show that Hadoop-A doubles the data processing throughput of Hadoop, and reduces CPU utilization by more than 36%.\",\"PeriodicalId\":358797,\"journal\":{\"name\":\"2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"123\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2063384.2063461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2063384.2063461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hadoop acceleration through network levitated merge
Hadoop is a popular open-source implementation of the MapReduce programming model for cloud computing. However, it faces a number of issues to achieve the best performance from the underlying system. These include a serialization barrier that delays the reduce phase, repetitive merges and disk access, and lack of capability to leverage latest high speed interconnects. We describe Hadoop-A, an acceleration framework that optimizes Hadoop with plugin components implemented in C++ for fast data movement, overcoming its existing limitations. A novel network-levitated merge algorithm is introduced to merge data without repetition and disk access. In addition, a full pipeline is designed to overlap the shuffle, merge and reduce phases. Our experimental results show that Hadoop-A doubles the data processing throughput of Hadoop, and reduces CPU utilization by more than 36%.