用监督稀疏滤波器检测源视频伪影

T. Goodall, A. Bovik
{"title":"用监督稀疏滤波器检测源视频伪影","authors":"T. Goodall, A. Bovik","doi":"10.1109/PCS.2018.8456303","DOIUrl":null,"url":null,"abstract":"A variety of powerful picture quality predictors are available that rely on neuro-statistical models of distortion perception. We extend these principles to video source inspection, by coupling spatial divisive normalization with a filterbank tuned for artifact detection, implemented in an augmented sparse functional form. We call this method the Video Impairment Detection by SParse Error CapTure (VIDSPECT). We configure VIDSPECT to create state-of-the-art detectors of two kinds of commonly encountered source video artifacts: upscaling and combing. The system detects upscaling, identifies upscaling type, and predicts the native video resolution. It also detects combing artifacts arising from interlacing. Our approach is simple, highly generalizable, and yields better accuracy than competing methods. A software release of VIDSPECT is available online: http://live.ece.utexas.edu/research/quality/VIDSPECT release.zip for public use and evaluation.","PeriodicalId":433667,"journal":{"name":"2018 Picture Coding Symposium (PCS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting Source Video Artifacts with Supervised Sparse Filters\",\"authors\":\"T. Goodall, A. Bovik\",\"doi\":\"10.1109/PCS.2018.8456303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A variety of powerful picture quality predictors are available that rely on neuro-statistical models of distortion perception. We extend these principles to video source inspection, by coupling spatial divisive normalization with a filterbank tuned for artifact detection, implemented in an augmented sparse functional form. We call this method the Video Impairment Detection by SParse Error CapTure (VIDSPECT). We configure VIDSPECT to create state-of-the-art detectors of two kinds of commonly encountered source video artifacts: upscaling and combing. The system detects upscaling, identifies upscaling type, and predicts the native video resolution. It also detects combing artifacts arising from interlacing. Our approach is simple, highly generalizable, and yields better accuracy than competing methods. A software release of VIDSPECT is available online: http://live.ece.utexas.edu/research/quality/VIDSPECT release.zip for public use and evaluation.\",\"PeriodicalId\":433667,\"journal\":{\"name\":\"2018 Picture Coding Symposium (PCS)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Picture Coding Symposium (PCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCS.2018.8456303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Picture Coding Symposium (PCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS.2018.8456303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

各种强大的图像质量预测是可用的,依赖于扭曲感知的神经统计模型。我们将这些原则扩展到视频源检测,通过将空间分裂归一化与调整为伪影检测的滤波器组耦合,以增强的稀疏函数形式实现。我们称这种方法为稀疏错误捕获视频损伤检测(VIDSPECT)。我们配置VIDSPECT来创建两种常见的源视频伪影的最先进的检测器:升级和梳理。系统检测升级,识别升级类型,预测原生视频分辨率。它还可以检测由交错产生的梳理伪影。我们的方法简单,可高度概括,并且比竞争对手的方法产生更好的准确性。VIDSPECT的软件版本可在网上获得:http://live.ece.utexas.edu/research/quality/VIDSPECT release.zip供公众使用和评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting Source Video Artifacts with Supervised Sparse Filters
A variety of powerful picture quality predictors are available that rely on neuro-statistical models of distortion perception. We extend these principles to video source inspection, by coupling spatial divisive normalization with a filterbank tuned for artifact detection, implemented in an augmented sparse functional form. We call this method the Video Impairment Detection by SParse Error CapTure (VIDSPECT). We configure VIDSPECT to create state-of-the-art detectors of two kinds of commonly encountered source video artifacts: upscaling and combing. The system detects upscaling, identifies upscaling type, and predicts the native video resolution. It also detects combing artifacts arising from interlacing. Our approach is simple, highly generalizable, and yields better accuracy than competing methods. A software release of VIDSPECT is available online: http://live.ece.utexas.edu/research/quality/VIDSPECT release.zip for public use and evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信