基于多尺度多阶段结构网络的人体姿态检测

Yalan Li, Jiangquan Huan, Xiaoqin Zhang, Min Yao
{"title":"基于多尺度多阶段结构网络的人体姿态检测","authors":"Yalan Li, Jiangquan Huan, Xiaoqin Zhang, Min Yao","doi":"10.1109/ICAA53760.2021.00126","DOIUrl":null,"url":null,"abstract":"Human pose detection is essential for human behaviour recognition. In this paper, an end-to-end network is proposed to improve the precision of pose detection by fusing multi-scale features, detected parts of the human body at coarse stages and the detected human positions. The network parameters are trained uniformly by Adam optimization algorithm. A large quantity of experiments is carried out on MPII dataset and the images captured by ourselves to explore the relationship between the detection rate and the network structure. The experimental results show that the network can achieve a high detection rate.","PeriodicalId":121879,"journal":{"name":"2021 International Conference on Intelligent Computing, Automation and Applications (ICAA)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human Pose Detection Based on Multi-scale and Multi-stage Structure Network\",\"authors\":\"Yalan Li, Jiangquan Huan, Xiaoqin Zhang, Min Yao\",\"doi\":\"10.1109/ICAA53760.2021.00126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human pose detection is essential for human behaviour recognition. In this paper, an end-to-end network is proposed to improve the precision of pose detection by fusing multi-scale features, detected parts of the human body at coarse stages and the detected human positions. The network parameters are trained uniformly by Adam optimization algorithm. A large quantity of experiments is carried out on MPII dataset and the images captured by ourselves to explore the relationship between the detection rate and the network structure. The experimental results show that the network can achieve a high detection rate.\",\"PeriodicalId\":121879,\"journal\":{\"name\":\"2021 International Conference on Intelligent Computing, Automation and Applications (ICAA)\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Intelligent Computing, Automation and Applications (ICAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAA53760.2021.00126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Intelligent Computing, Automation and Applications (ICAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAA53760.2021.00126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人体姿态检测是人类行为识别的基础。为了提高姿态检测的精度,本文提出了一种端到端网络,通过融合多尺度特征、粗糙阶段的人体检测部位和检测到的人体位置来提高姿态检测的精度。采用Adam优化算法对网络参数进行统一训练。在MPII数据集和我们自己拍摄的图像上进行了大量的实验,探索检测率和网络结构之间的关系。实验结果表明,该网络可以达到较高的检测率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human Pose Detection Based on Multi-scale and Multi-stage Structure Network
Human pose detection is essential for human behaviour recognition. In this paper, an end-to-end network is proposed to improve the precision of pose detection by fusing multi-scale features, detected parts of the human body at coarse stages and the detected human positions. The network parameters are trained uniformly by Adam optimization algorithm. A large quantity of experiments is carried out on MPII dataset and the images captured by ourselves to explore the relationship between the detection rate and the network structure. The experimental results show that the network can achieve a high detection rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信