韵律迁移嵌入可以用于韵律评估吗?

Mariana Julião, A. Abad, Helena Moniz
{"title":"韵律迁移嵌入可以用于韵律评估吗?","authors":"Mariana Julião, A. Abad, Helena Moniz","doi":"10.21437/speechprosody.2022-60","DOIUrl":null,"url":null,"abstract":"In voice conversion, it is possible to transfer some characteris-tic components of a (target) speech utterance, such as the content, pitch, or speaker identity, from the corresponding component from another (source) utterance. This has recently been achieved by characterizing these components through neural-based vector embeddings which encode the specific information to be transferred. In the particular case of neural prosody embeddings, to the best of our knowledge, no work has ex-plored the informativeness of these embeddings for other pur-poses, such as prosody assessment or comparison of prosodic patterns. In this work, we use an intonation data set and a voice conversion corpus to explore how these neural prosody embeddings group for utterances of different intonation, content, and speaker identity. We compare these neural prosody embeddings to hand-crafted acoustic-prosodic features and to content embeddings. We found that neural prosody embeddings can achieve a geometrical separability index as high as 0.956 for highly contrastive intonations, and 0.706 for different sentence types.","PeriodicalId":442842,"journal":{"name":"Speech Prosody 2022","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Can Prosody Transfer Embeddings be Used for Prosody Assessment?\",\"authors\":\"Mariana Julião, A. Abad, Helena Moniz\",\"doi\":\"10.21437/speechprosody.2022-60\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In voice conversion, it is possible to transfer some characteris-tic components of a (target) speech utterance, such as the content, pitch, or speaker identity, from the corresponding component from another (source) utterance. This has recently been achieved by characterizing these components through neural-based vector embeddings which encode the specific information to be transferred. In the particular case of neural prosody embeddings, to the best of our knowledge, no work has ex-plored the informativeness of these embeddings for other pur-poses, such as prosody assessment or comparison of prosodic patterns. In this work, we use an intonation data set and a voice conversion corpus to explore how these neural prosody embeddings group for utterances of different intonation, content, and speaker identity. We compare these neural prosody embeddings to hand-crafted acoustic-prosodic features and to content embeddings. We found that neural prosody embeddings can achieve a geometrical separability index as high as 0.956 for highly contrastive intonations, and 0.706 for different sentence types.\",\"PeriodicalId\":442842,\"journal\":{\"name\":\"Speech Prosody 2022\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Speech Prosody 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21437/speechprosody.2022-60\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Speech Prosody 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/speechprosody.2022-60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在语音转换中,可以从另一(源)语音的相应成分中转移(目标)语音的某些特征成分,例如内容、音高或说话人身份。这是最近通过基于神经的向量嵌入来表征这些组件来实现的,这些向量嵌入对要传输的特定信息进行编码。在神经韵律嵌入的特殊情况下,据我们所知,还没有研究这些嵌入的信息性用于其他目的,如韵律评估或韵律模式的比较。在这项工作中,我们使用语调数据集和语音转换语料库来探索这些神经韵律嵌入如何针对不同语调、内容和说话者身份的话语进行分组。我们将这些神经韵律嵌入与手工制作的声学韵律特征和内容嵌入进行比较。我们发现,神经韵律嵌入对于高度对比语调的几何可分性指数高达0.956,对于不同句子类型的几何可分性指数高达0.706。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Can Prosody Transfer Embeddings be Used for Prosody Assessment?
In voice conversion, it is possible to transfer some characteris-tic components of a (target) speech utterance, such as the content, pitch, or speaker identity, from the corresponding component from another (source) utterance. This has recently been achieved by characterizing these components through neural-based vector embeddings which encode the specific information to be transferred. In the particular case of neural prosody embeddings, to the best of our knowledge, no work has ex-plored the informativeness of these embeddings for other pur-poses, such as prosody assessment or comparison of prosodic patterns. In this work, we use an intonation data set and a voice conversion corpus to explore how these neural prosody embeddings group for utterances of different intonation, content, and speaker identity. We compare these neural prosody embeddings to hand-crafted acoustic-prosodic features and to content embeddings. We found that neural prosody embeddings can achieve a geometrical separability index as high as 0.956 for highly contrastive intonations, and 0.706 for different sentence types.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信