基于CNN的人脸识别中3D人脸表示到2D图像的保角映射

J. Kittler, P. Koppen, P. Kopp, P. Huber, Matthias Rätsch
{"title":"基于CNN的人脸识别中3D人脸表示到2D图像的保角映射","authors":"J. Kittler, P. Koppen, P. Kopp, P. Huber, Matthias Rätsch","doi":"10.1109/ICB2018.2018.00029","DOIUrl":null,"url":null,"abstract":"Fitting 3D Morphable Face Models (3DMM) to a 2D face image allows the separation of face shape from skin texture, as well as correction for face expression. However, the recovered 3D face representation is not readily amenable to processing by convolutional neural networks (CNN). We propose a conformal mapping from a 3D mesh to a 2D image, which makes these machine learning tools accessible by 3D face data. Experiments with a CNN based face recognition system designed using the proposed representation have been carried out to validate the advocated approach. The results obtained on standard benchmarking data sets show its promise.","PeriodicalId":130957,"journal":{"name":"2018 International Conference on Biometrics (ICB)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Conformal Mapping of a 3D Face Representation onto a 2D Image for CNN Based Face Recognition\",\"authors\":\"J. Kittler, P. Koppen, P. Kopp, P. Huber, Matthias Rätsch\",\"doi\":\"10.1109/ICB2018.2018.00029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fitting 3D Morphable Face Models (3DMM) to a 2D face image allows the separation of face shape from skin texture, as well as correction for face expression. However, the recovered 3D face representation is not readily amenable to processing by convolutional neural networks (CNN). We propose a conformal mapping from a 3D mesh to a 2D image, which makes these machine learning tools accessible by 3D face data. Experiments with a CNN based face recognition system designed using the proposed representation have been carried out to validate the advocated approach. The results obtained on standard benchmarking data sets show its promise.\",\"PeriodicalId\":130957,\"journal\":{\"name\":\"2018 International Conference on Biometrics (ICB)\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Biometrics (ICB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICB2018.2018.00029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB2018.2018.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

将3D变形面部模型(3DMM)拟合到2D面部图像中可以将面部形状与皮肤纹理分离,并对面部表情进行校正。然而,恢复的3D人脸表示不容易接受卷积神经网络(CNN)的处理。我们提出了从3D网格到2D图像的保角映射,这使得这些机器学习工具可以被3D人脸数据访问。使用该方法设计的基于CNN的人脸识别系统进行了实验,以验证所提倡的方法。在标准基准数据集上获得的结果显示了它的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conformal Mapping of a 3D Face Representation onto a 2D Image for CNN Based Face Recognition
Fitting 3D Morphable Face Models (3DMM) to a 2D face image allows the separation of face shape from skin texture, as well as correction for face expression. However, the recovered 3D face representation is not readily amenable to processing by convolutional neural networks (CNN). We propose a conformal mapping from a 3D mesh to a 2D image, which makes these machine learning tools accessible by 3D face data. Experiments with a CNN based face recognition system designed using the proposed representation have been carried out to validate the advocated approach. The results obtained on standard benchmarking data sets show its promise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信