J. Kittler, P. Koppen, P. Kopp, P. Huber, Matthias Rätsch
{"title":"基于CNN的人脸识别中3D人脸表示到2D图像的保角映射","authors":"J. Kittler, P. Koppen, P. Kopp, P. Huber, Matthias Rätsch","doi":"10.1109/ICB2018.2018.00029","DOIUrl":null,"url":null,"abstract":"Fitting 3D Morphable Face Models (3DMM) to a 2D face image allows the separation of face shape from skin texture, as well as correction for face expression. However, the recovered 3D face representation is not readily amenable to processing by convolutional neural networks (CNN). We propose a conformal mapping from a 3D mesh to a 2D image, which makes these machine learning tools accessible by 3D face data. Experiments with a CNN based face recognition system designed using the proposed representation have been carried out to validate the advocated approach. The results obtained on standard benchmarking data sets show its promise.","PeriodicalId":130957,"journal":{"name":"2018 International Conference on Biometrics (ICB)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Conformal Mapping of a 3D Face Representation onto a 2D Image for CNN Based Face Recognition\",\"authors\":\"J. Kittler, P. Koppen, P. Kopp, P. Huber, Matthias Rätsch\",\"doi\":\"10.1109/ICB2018.2018.00029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fitting 3D Morphable Face Models (3DMM) to a 2D face image allows the separation of face shape from skin texture, as well as correction for face expression. However, the recovered 3D face representation is not readily amenable to processing by convolutional neural networks (CNN). We propose a conformal mapping from a 3D mesh to a 2D image, which makes these machine learning tools accessible by 3D face data. Experiments with a CNN based face recognition system designed using the proposed representation have been carried out to validate the advocated approach. The results obtained on standard benchmarking data sets show its promise.\",\"PeriodicalId\":130957,\"journal\":{\"name\":\"2018 International Conference on Biometrics (ICB)\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Biometrics (ICB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICB2018.2018.00029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB2018.2018.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Conformal Mapping of a 3D Face Representation onto a 2D Image for CNN Based Face Recognition
Fitting 3D Morphable Face Models (3DMM) to a 2D face image allows the separation of face shape from skin texture, as well as correction for face expression. However, the recovered 3D face representation is not readily amenable to processing by convolutional neural networks (CNN). We propose a conformal mapping from a 3D mesh to a 2D image, which makes these machine learning tools accessible by 3D face data. Experiments with a CNN based face recognition system designed using the proposed representation have been carried out to validate the advocated approach. The results obtained on standard benchmarking data sets show its promise.