缺口模式统计

Philippe Duchon, C. Nicaud, Carine Pivoteau
{"title":"缺口模式统计","authors":"Philippe Duchon, C. Nicaud, Carine Pivoteau","doi":"10.4230/LIPIcs.CPM.2017.21","DOIUrl":null,"url":null,"abstract":"We give a probabilistic analysis of parameters related to $\\alpha$-gapped repeats and palindromes in random words, under both uniform and memoryless distributions (where letters have different probabilities, but are drawn independently). \nMore precisely, we study the expected number of maximal $\\alpha$-gapped patterns, as well as the expected length of the longest $\\alpha$-gapped pattern in a random word.","PeriodicalId":236737,"journal":{"name":"Annual Symposium on Combinatorial Pattern Matching","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Gapped Pattern Statistics\",\"authors\":\"Philippe Duchon, C. Nicaud, Carine Pivoteau\",\"doi\":\"10.4230/LIPIcs.CPM.2017.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a probabilistic analysis of parameters related to $\\\\alpha$-gapped repeats and palindromes in random words, under both uniform and memoryless distributions (where letters have different probabilities, but are drawn independently). \\nMore precisely, we study the expected number of maximal $\\\\alpha$-gapped patterns, as well as the expected length of the longest $\\\\alpha$-gapped pattern in a random word.\",\"PeriodicalId\":236737,\"journal\":{\"name\":\"Annual Symposium on Combinatorial Pattern Matching\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Symposium on Combinatorial Pattern Matching\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.CPM.2017.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Symposium on Combinatorial Pattern Matching","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CPM.2017.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们在均匀分布和无记忆分布(其中字母具有不同的概率,但独立绘制)下,对随机单词中与$\alpha$间隙重复和回文相关的参数进行了概率分析。更准确地说,我们研究了一个随机单词中最大$\alpha$-gap模式的期望数目,以及最长$\alpha$-gap模式的期望长度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gapped Pattern Statistics
We give a probabilistic analysis of parameters related to $\alpha$-gapped repeats and palindromes in random words, under both uniform and memoryless distributions (where letters have different probabilities, but are drawn independently). More precisely, we study the expected number of maximal $\alpha$-gapped patterns, as well as the expected length of the longest $\alpha$-gapped pattern in a random word.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信