DMPCANet:一种用于视觉位置识别的低维聚合网络

Yinghao Wang, Haonan Chen, Jiong Wang, Yingying Zhu
{"title":"DMPCANet:一种用于视觉位置识别的低维聚合网络","authors":"Yinghao Wang, Haonan Chen, Jiong Wang, Yingying Zhu","doi":"10.1145/3512527.3531427","DOIUrl":null,"url":null,"abstract":"Visual place recognition (VPR) aims to estimate the geographical location of a query image by finding its nearest reference images from a large geo-tagged database. Most of the existing methods adopt convolutional neural networks to extract feature maps from images. Nevertheless, such feature maps are high-dimensional tensors, and it is a challenge to effectively aggregate them into a compact vector representation for efficient retrieval. To tackle this challenge, we develop an end-to-end convolutional neural network architecture named DMPCANet. The network adopts the regional pooling module to generate feature tensors of the same size from images of different sizes. The core component of our network, the Differentiable Multilinear Principal Component Analysis (DMPCA) module, directly acts on tensor data and utilizes convolution operations to generate projection matrices for dimensionality reduction, thereby reducing the dimensionality to one sixteenth. This module can preserve crucial information while reducing data dimensions. Experiments on two widely used place recognition datasets demonstrate that our proposed DMPCANet can generate low-dimensional discriminative global descriptors and achieve the state-of-the-art results.","PeriodicalId":179895,"journal":{"name":"Proceedings of the 2022 International Conference on Multimedia Retrieval","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DMPCANet: A Low Dimensional Aggregation Network for Visual Place Recognition\",\"authors\":\"Yinghao Wang, Haonan Chen, Jiong Wang, Yingying Zhu\",\"doi\":\"10.1145/3512527.3531427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual place recognition (VPR) aims to estimate the geographical location of a query image by finding its nearest reference images from a large geo-tagged database. Most of the existing methods adopt convolutional neural networks to extract feature maps from images. Nevertheless, such feature maps are high-dimensional tensors, and it is a challenge to effectively aggregate them into a compact vector representation for efficient retrieval. To tackle this challenge, we develop an end-to-end convolutional neural network architecture named DMPCANet. The network adopts the regional pooling module to generate feature tensors of the same size from images of different sizes. The core component of our network, the Differentiable Multilinear Principal Component Analysis (DMPCA) module, directly acts on tensor data and utilizes convolution operations to generate projection matrices for dimensionality reduction, thereby reducing the dimensionality to one sixteenth. This module can preserve crucial information while reducing data dimensions. Experiments on two widely used place recognition datasets demonstrate that our proposed DMPCANet can generate low-dimensional discriminative global descriptors and achieve the state-of-the-art results.\",\"PeriodicalId\":179895,\"journal\":{\"name\":\"Proceedings of the 2022 International Conference on Multimedia Retrieval\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3512527.3531427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3512527.3531427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

视觉位置识别(VPR)旨在通过从大型地理标记数据库中找到离查询图像最近的参考图像来估计查询图像的地理位置。现有的方法大多采用卷积神经网络从图像中提取特征映射。然而,这些特征映射是高维张量,如何有效地将它们聚合成一个紧凑的向量表示以进行高效检索是一个挑战。为了应对这一挑战,我们开发了一个端到端卷积神经网络架构,名为DMPCANet。该网络采用区域池化模块,从不同大小的图像中生成相同大小的特征张量。我们网络的核心组件,可微分多线性主成分分析(DMPCA)模块,直接作用于张量数据,并利用卷积运算生成投影矩阵进行降维,从而将维数降低到十六分之一。该模块可以在减少数据维度的同时保留关键信息。在两个广泛使用的位置识别数据集上的实验表明,我们提出的DMPCANet可以生成低维判别全局描述符,并取得了最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DMPCANet: A Low Dimensional Aggregation Network for Visual Place Recognition
Visual place recognition (VPR) aims to estimate the geographical location of a query image by finding its nearest reference images from a large geo-tagged database. Most of the existing methods adopt convolutional neural networks to extract feature maps from images. Nevertheless, such feature maps are high-dimensional tensors, and it is a challenge to effectively aggregate them into a compact vector representation for efficient retrieval. To tackle this challenge, we develop an end-to-end convolutional neural network architecture named DMPCANet. The network adopts the regional pooling module to generate feature tensors of the same size from images of different sizes. The core component of our network, the Differentiable Multilinear Principal Component Analysis (DMPCA) module, directly acts on tensor data and utilizes convolution operations to generate projection matrices for dimensionality reduction, thereby reducing the dimensionality to one sixteenth. This module can preserve crucial information while reducing data dimensions. Experiments on two widely used place recognition datasets demonstrate that our proposed DMPCANet can generate low-dimensional discriminative global descriptors and achieve the state-of-the-art results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信