{"title":"超级奈奎斯特信号传输和数字信号处理","authors":"Junwen Zhang, Jianjun Yu, N. Chi","doi":"10.1117/12.2071275","DOIUrl":null,"url":null,"abstract":"Super-Nyquist, also known as Fast-than-Nyquist (FTN), signal generation based on optical or electrical spectrum shaping methods has been demonstrated to be an efficient scheme for future high-capacity transmission systems. Super- Nyquist signal demodulations based on maximum a posteriori (MAP) or maximum likelihood sequence estimation (MLSE) on receiver side have been demonstrated in 100G, 200G and 400G systems, which enables PDM-QPSK transmission with 4bit/s/Hz net spectral efficiency (SE) at lower OSNR requirement and longer transmission distance. Further studies also show the highly filtering-tolerant advantage of the super-Nyquist signal when using the 9-QAMbased multi-modulus equalization. This feature is quite useful for signals transmission under the aggressive optical filtering in multiple reconfigurable optical add-drop multiplexers (ROADMs) transmission link. In this paper, we review the newly reported super-Nyquist experiments using the optical super-Nyquist filtering 9-QAM like signals based on multi-modulus equalization (MMEQ). We directly recover the Nyquist filtered QPSK to a 9-QAM like signal. We first successfully transmitted 100-GHz-grid, 20 channels single-carrier 440-Gb/s super-Nyquist 9-QAM-like signal over 3600-km ultra-large effective-area fiber (ULAF) at record a net SE of 4b/s/Hz (after excluding the 7% hard-decision FEC overhead). The highly filtering-tolerant performance of the 9-QAM liked super-Nyquist signal is also experimentally demonstrated. Using this scheme, we then successfully transmit 10 channels 440-Gb/s signal over 3000- km ULAF and 10 cascaded ROADMs with 100-GHz-grid based on the single-carrier ETDM 110-GBaud QPSK. It is the highest baud rate of all-ETDM signal reported with the highest net SE at this baud rate for PDM-QPSK signal.","PeriodicalId":164339,"journal":{"name":"Photonics Asia","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Super-Nyquist signal transmission and digital signal processing\",\"authors\":\"Junwen Zhang, Jianjun Yu, N. Chi\",\"doi\":\"10.1117/12.2071275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Super-Nyquist, also known as Fast-than-Nyquist (FTN), signal generation based on optical or electrical spectrum shaping methods has been demonstrated to be an efficient scheme for future high-capacity transmission systems. Super- Nyquist signal demodulations based on maximum a posteriori (MAP) or maximum likelihood sequence estimation (MLSE) on receiver side have been demonstrated in 100G, 200G and 400G systems, which enables PDM-QPSK transmission with 4bit/s/Hz net spectral efficiency (SE) at lower OSNR requirement and longer transmission distance. Further studies also show the highly filtering-tolerant advantage of the super-Nyquist signal when using the 9-QAMbased multi-modulus equalization. This feature is quite useful for signals transmission under the aggressive optical filtering in multiple reconfigurable optical add-drop multiplexers (ROADMs) transmission link. In this paper, we review the newly reported super-Nyquist experiments using the optical super-Nyquist filtering 9-QAM like signals based on multi-modulus equalization (MMEQ). We directly recover the Nyquist filtered QPSK to a 9-QAM like signal. We first successfully transmitted 100-GHz-grid, 20 channels single-carrier 440-Gb/s super-Nyquist 9-QAM-like signal over 3600-km ultra-large effective-area fiber (ULAF) at record a net SE of 4b/s/Hz (after excluding the 7% hard-decision FEC overhead). The highly filtering-tolerant performance of the 9-QAM liked super-Nyquist signal is also experimentally demonstrated. Using this scheme, we then successfully transmit 10 channels 440-Gb/s signal over 3000- km ULAF and 10 cascaded ROADMs with 100-GHz-grid based on the single-carrier ETDM 110-GBaud QPSK. It is the highest baud rate of all-ETDM signal reported with the highest net SE at this baud rate for PDM-QPSK signal.\",\"PeriodicalId\":164339,\"journal\":{\"name\":\"Photonics Asia\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2071275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2071275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Super-Nyquist signal transmission and digital signal processing
Super-Nyquist, also known as Fast-than-Nyquist (FTN), signal generation based on optical or electrical spectrum shaping methods has been demonstrated to be an efficient scheme for future high-capacity transmission systems. Super- Nyquist signal demodulations based on maximum a posteriori (MAP) or maximum likelihood sequence estimation (MLSE) on receiver side have been demonstrated in 100G, 200G and 400G systems, which enables PDM-QPSK transmission with 4bit/s/Hz net spectral efficiency (SE) at lower OSNR requirement and longer transmission distance. Further studies also show the highly filtering-tolerant advantage of the super-Nyquist signal when using the 9-QAMbased multi-modulus equalization. This feature is quite useful for signals transmission under the aggressive optical filtering in multiple reconfigurable optical add-drop multiplexers (ROADMs) transmission link. In this paper, we review the newly reported super-Nyquist experiments using the optical super-Nyquist filtering 9-QAM like signals based on multi-modulus equalization (MMEQ). We directly recover the Nyquist filtered QPSK to a 9-QAM like signal. We first successfully transmitted 100-GHz-grid, 20 channels single-carrier 440-Gb/s super-Nyquist 9-QAM-like signal over 3600-km ultra-large effective-area fiber (ULAF) at record a net SE of 4b/s/Hz (after excluding the 7% hard-decision FEC overhead). The highly filtering-tolerant performance of the 9-QAM liked super-Nyquist signal is also experimentally demonstrated. Using this scheme, we then successfully transmit 10 channels 440-Gb/s signal over 3000- km ULAF and 10 cascaded ROADMs with 100-GHz-grid based on the single-carrier ETDM 110-GBaud QPSK. It is the highest baud rate of all-ETDM signal reported with the highest net SE at this baud rate for PDM-QPSK signal.