基于多分辨率局部模式和集成支持向量机的HEp-2细胞分类

Siyamalan Manivannan, Wenqi Li, Shazia Akbar, Ruixuan Wang, Jianguo Zhang, S. McKenna
{"title":"基于多分辨率局部模式和集成支持向量机的HEp-2细胞分类","authors":"Siyamalan Manivannan, Wenqi Li, Shazia Akbar, Ruixuan Wang, Jianguo Zhang, S. McKenna","doi":"10.1109/I3A.2014.18","DOIUrl":null,"url":null,"abstract":"We describe a pattern recognition system for classifying immunofluorescence images of HEp-2 cells into six classes: homogeneous, speckled, nucleolar, centromere, golgi, and nuclear membrane. We use locality-constrained linear coding to encode multiple local features and two-level cell pyramids to capture spatial structure of cells. An ensemble of linear support vector machines is used to classify each cell image. Leave-one-specimen-out experiments on the I3A Contest Task 1 training data set predicted a mean class accuracy of 80.25%.","PeriodicalId":103785,"journal":{"name":"2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"HEp-2 Cell Classification Using Multi-resolution Local Patterns and Ensemble SVMs\",\"authors\":\"Siyamalan Manivannan, Wenqi Li, Shazia Akbar, Ruixuan Wang, Jianguo Zhang, S. McKenna\",\"doi\":\"10.1109/I3A.2014.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a pattern recognition system for classifying immunofluorescence images of HEp-2 cells into six classes: homogeneous, speckled, nucleolar, centromere, golgi, and nuclear membrane. We use locality-constrained linear coding to encode multiple local features and two-level cell pyramids to capture spatial structure of cells. An ensemble of linear support vector machines is used to classify each cell image. Leave-one-specimen-out experiments on the I3A Contest Task 1 training data set predicted a mean class accuracy of 80.25%.\",\"PeriodicalId\":103785,\"journal\":{\"name\":\"2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I3A.2014.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I3A.2014.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

我们描述了一种模式识别系统,用于将HEp-2细胞的免疫荧光图像分为六类:均质,斑点,核仁,着丝粒,高尔基体和核膜。我们使用位置约束线性编码对多个局部特征进行编码,并使用两级细胞金字塔来捕获细胞的空间结构。使用线性支持向量机集合对每个细胞图像进行分类。在I3A Contest Task 1训练数据集上进行的“留一个样本”实验预测平均分类准确率为80.25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HEp-2 Cell Classification Using Multi-resolution Local Patterns and Ensemble SVMs
We describe a pattern recognition system for classifying immunofluorescence images of HEp-2 cells into six classes: homogeneous, speckled, nucleolar, centromere, golgi, and nuclear membrane. We use locality-constrained linear coding to encode multiple local features and two-level cell pyramids to capture spatial structure of cells. An ensemble of linear support vector machines is used to classify each cell image. Leave-one-specimen-out experiments on the I3A Contest Task 1 training data set predicted a mean class accuracy of 80.25%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信