基于遗传学的专家系统规则库自动获取技术

Clayton M. Johnson, Stefan Feyock
{"title":"基于遗传学的专家系统规则库自动获取技术","authors":"Clayton M. Johnson, Stefan Feyock","doi":"10.1109/DMESP.1991.171705","DOIUrl":null,"url":null,"abstract":"The genetic algorithm (GA) is a powerful search paradigm which combines elements from evolutionary biology with concepts from population genetics. Because they operate in a domain-independent fashion, GAs have been successfully applied to a wide variety of optimization and learning problems. A technique is presented by which genetic algorithms can be adapted to operate upon the LISP-like production rules typically used in expert systems. A brief overview is presented of genetic algorithms and genetics-based learning.<<ETX>>","PeriodicalId":117336,"journal":{"name":"[1991] Proceedings of the IEEE/ACM International Conference on Developing and Managing Expert System Programs","volume":"186 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A genetics-based technique for the automated acquisition of expert system rule bases\",\"authors\":\"Clayton M. Johnson, Stefan Feyock\",\"doi\":\"10.1109/DMESP.1991.171705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The genetic algorithm (GA) is a powerful search paradigm which combines elements from evolutionary biology with concepts from population genetics. Because they operate in a domain-independent fashion, GAs have been successfully applied to a wide variety of optimization and learning problems. A technique is presented by which genetic algorithms can be adapted to operate upon the LISP-like production rules typically used in expert systems. A brief overview is presented of genetic algorithms and genetics-based learning.<<ETX>>\",\"PeriodicalId\":117336,\"journal\":{\"name\":\"[1991] Proceedings of the IEEE/ACM International Conference on Developing and Managing Expert System Programs\",\"volume\":\"186 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Proceedings of the IEEE/ACM International Conference on Developing and Managing Expert System Programs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DMESP.1991.171705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings of the IEEE/ACM International Conference on Developing and Managing Expert System Programs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DMESP.1991.171705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

遗传算法(GA)是一种强大的搜索范式,它结合了进化生物学的元素和群体遗传学的概念。由于GAs以领域独立的方式运行,因此已成功地应用于各种优化和学习问题。提出了一种技术,通过这种技术,遗传算法可以适应于在专家系统中通常使用的类似lisp的生产规则上进行操作。简要概述了遗传算法和基于遗传的学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A genetics-based technique for the automated acquisition of expert system rule bases
The genetic algorithm (GA) is a powerful search paradigm which combines elements from evolutionary biology with concepts from population genetics. Because they operate in a domain-independent fashion, GAs have been successfully applied to a wide variety of optimization and learning problems. A technique is presented by which genetic algorithms can be adapted to operate upon the LISP-like production rules typically used in expert systems. A brief overview is presented of genetic algorithms and genetics-based learning.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信