随机ad-hoc网络的第k近邻距离分布

Bhupendra Gupta, S. S. Lamba
{"title":"随机ad-hoc网络的第k近邻距离分布","authors":"Bhupendra Gupta, S. S. Lamba","doi":"10.1109/TENCONSPRING.2014.6863088","DOIUrl":null,"url":null,"abstract":"The internodal distance is an important characteristic of ad-hoc wireless networks and sensor networks. Some important properties like propagation delay, like capacity etc. are depending on the internodal distance. In this paper we consider a d-dimensional binomial point process (BPP) having N points distributed uniformly over a compact space S ⊂ Rd. Here we prove that the kth nearest neighbor distance in binomial point process converges weakly to the nth nearest neighbor distance in Poisson point process, which follows a generalize gamma density.","PeriodicalId":270495,"journal":{"name":"2014 IEEE REGION 10 SYMPOSIUM","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On k-th nearest neighbor distance distribution of random ad-hoc network\",\"authors\":\"Bhupendra Gupta, S. S. Lamba\",\"doi\":\"10.1109/TENCONSPRING.2014.6863088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The internodal distance is an important characteristic of ad-hoc wireless networks and sensor networks. Some important properties like propagation delay, like capacity etc. are depending on the internodal distance. In this paper we consider a d-dimensional binomial point process (BPP) having N points distributed uniformly over a compact space S ⊂ Rd. Here we prove that the kth nearest neighbor distance in binomial point process converges weakly to the nth nearest neighbor distance in Poisson point process, which follows a generalize gamma density.\",\"PeriodicalId\":270495,\"journal\":{\"name\":\"2014 IEEE REGION 10 SYMPOSIUM\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE REGION 10 SYMPOSIUM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCONSPRING.2014.6863088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE REGION 10 SYMPOSIUM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCONSPRING.2014.6863088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

节点间距离是自组织无线网络和传感器网络的一个重要特征。一些重要的特性,如传输延迟、容量等,都取决于节点间距离。本文考虑一个d维二项式点过程(BPP),它有N个点均匀分布在紧空间S∧Rd上。在这里我们证明了二项式点过程中的第k个最近邻距离弱收敛于泊松点过程中的第N个最近邻距离,泊松点过程遵循广义伽马密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On k-th nearest neighbor distance distribution of random ad-hoc network
The internodal distance is an important characteristic of ad-hoc wireless networks and sensor networks. Some important properties like propagation delay, like capacity etc. are depending on the internodal distance. In this paper we consider a d-dimensional binomial point process (BPP) having N points distributed uniformly over a compact space S ⊂ Rd. Here we prove that the kth nearest neighbor distance in binomial point process converges weakly to the nth nearest neighbor distance in Poisson point process, which follows a generalize gamma density.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信