面向对象分类的潜在主题视觉语言模型

Lei Wu, Nenghai Yu, J. Liu, Mingjing Li
{"title":"面向对象分类的潜在主题视觉语言模型","authors":"Lei Wu, Nenghai Yu, J. Liu, Mingjing Li","doi":"10.5220/0003491601490158","DOIUrl":null,"url":null,"abstract":"This paper presents a latent topic visual language model to handle variation problem in object categorization. Variations including different views, styles, poses, etc., have greatly affected the spatial arrangement and distribution of visual features, on which previous categorization models largely depend. Taking the object variations as hidden topics within each category, the proposed model explores the relationship between object variations and visual feature arrangement in the traditional visual language modeling process. With this improvement, the accuracy of object categorization is further boosted. Experiments on Caltech 101 dataset have shown that this model makes sense and is effective.","PeriodicalId":103791,"journal":{"name":"Proceedings of the International Conference on Signal Processing and Multimedia Applications","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Latent topic visual language model for object categorization\",\"authors\":\"Lei Wu, Nenghai Yu, J. Liu, Mingjing Li\",\"doi\":\"10.5220/0003491601490158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a latent topic visual language model to handle variation problem in object categorization. Variations including different views, styles, poses, etc., have greatly affected the spatial arrangement and distribution of visual features, on which previous categorization models largely depend. Taking the object variations as hidden topics within each category, the proposed model explores the relationship between object variations and visual feature arrangement in the traditional visual language modeling process. With this improvement, the accuracy of object categorization is further boosted. Experiments on Caltech 101 dataset have shown that this model makes sense and is effective.\",\"PeriodicalId\":103791,\"journal\":{\"name\":\"Proceedings of the International Conference on Signal Processing and Multimedia Applications\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on Signal Processing and Multimedia Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0003491601490158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Signal Processing and Multimedia Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0003491601490158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

针对对象分类中的变异问题,提出了一种潜在主题视觉语言模型。不同的视角、风格、姿势等变化极大地影响了视觉特征的空间排列和分布,而以往的分类模型很大程度上依赖于视觉特征的空间排列和分布。该模型将对象变化作为每个类别中的隐藏主题,探讨了传统视觉语言建模过程中对象变化与视觉特征排列之间的关系。通过这种改进,进一步提高了对象分类的准确性。在Caltech 101数据集上的实验表明,该模型是有意义和有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Latent topic visual language model for object categorization
This paper presents a latent topic visual language model to handle variation problem in object categorization. Variations including different views, styles, poses, etc., have greatly affected the spatial arrangement and distribution of visual features, on which previous categorization models largely depend. Taking the object variations as hidden topics within each category, the proposed model explores the relationship between object variations and visual feature arrangement in the traditional visual language modeling process. With this improvement, the accuracy of object categorization is further boosted. Experiments on Caltech 101 dataset have shown that this model makes sense and is effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信