基于遗传搜索的纹理识别特征检测器的生成

J. Bala, K. A. Jong
{"title":"基于遗传搜索的纹理识别特征检测器的生成","authors":"J. Bala, K. A. Jong","doi":"10.1109/TAI.1990.130443","DOIUrl":null,"url":null,"abstract":"A genetic-algorithm-based methodology for learning a set of feature detectors for texture discrimination is presented. This methodology is incorporated into a vision system that learns to classify noisy examples of different texture classes by evolving populations of simple and texture-specific local spatial feature detectors. The results of preliminary work confirm the utility of the genetic algorithm in solving problems within the specified domain.<<ETX>>","PeriodicalId":366276,"journal":{"name":"[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Generation of feature detectors for texture discrimination by genetic search\",\"authors\":\"J. Bala, K. A. Jong\",\"doi\":\"10.1109/TAI.1990.130443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A genetic-algorithm-based methodology for learning a set of feature detectors for texture discrimination is presented. This methodology is incorporated into a vision system that learns to classify noisy examples of different texture classes by evolving populations of simple and texture-specific local spatial feature detectors. The results of preliminary work confirm the utility of the genetic algorithm in solving problems within the specified domain.<<ETX>>\",\"PeriodicalId\":366276,\"journal\":{\"name\":\"[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.1990.130443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1990.130443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种基于遗传算法的纹理识别特征检测器学习方法。该方法被整合到一个视觉系统中,该系统通过进化简单的和纹理特定的局部空间特征检测器群体来学习对不同纹理类别的噪声样本进行分类。初步工作的结果证实了遗传算法在求解特定领域内问题的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generation of feature detectors for texture discrimination by genetic search
A genetic-algorithm-based methodology for learning a set of feature detectors for texture discrimination is presented. This methodology is incorporated into a vision system that learns to classify noisy examples of different texture classes by evolving populations of simple and texture-specific local spatial feature detectors. The results of preliminary work confirm the utility of the genetic algorithm in solving problems within the specified domain.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信