超声心动图视频中的左心室检测

Dhouha Attia, A. Benazza-Benyahia
{"title":"超声心动图视频中的左心室检测","authors":"Dhouha Attia, A. Benazza-Benyahia","doi":"10.1109/ATSIP.2018.8364476","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new fully automated approach of Left Ventricle (LV) segmentation in 2D echocardiography videos. The proposed segmentation method combines texture gradients in moving sequences. The novelty of our approach consists in exploiting simultaneously the intra-frame and the motion information. Experiments are carried out on apical echocardiographic sequences and indicate the benefit that can be drawn from the proposed method in terms of both accuracy and computational complexity.","PeriodicalId":332253,"journal":{"name":"2018 4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"185 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Left ventricle detection in echocardiography videos\",\"authors\":\"Dhouha Attia, A. Benazza-Benyahia\",\"doi\":\"10.1109/ATSIP.2018.8364476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new fully automated approach of Left Ventricle (LV) segmentation in 2D echocardiography videos. The proposed segmentation method combines texture gradients in moving sequences. The novelty of our approach consists in exploiting simultaneously the intra-frame and the motion information. Experiments are carried out on apical echocardiographic sequences and indicate the benefit that can be drawn from the proposed method in terms of both accuracy and computational complexity.\",\"PeriodicalId\":332253,\"journal\":{\"name\":\"2018 4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"volume\":\"185 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATSIP.2018.8364476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP.2018.8364476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们提出了一种新的全自动化的二维超声心动图视频左心室(LV)分割方法。所提出的分割方法结合了运动序列的纹理梯度。该方法的新颖之处在于同时利用帧内信息和运动信息。在心尖超声心动图序列上进行的实验表明,所提出的方法在准确性和计算复杂度方面都有好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Left ventricle detection in echocardiography videos
In this paper, we propose a new fully automated approach of Left Ventricle (LV) segmentation in 2D echocardiography videos. The proposed segmentation method combines texture gradients in moving sequences. The novelty of our approach consists in exploiting simultaneously the intra-frame and the motion information. Experiments are carried out on apical echocardiographic sequences and indicate the benefit that can be drawn from the proposed method in terms of both accuracy and computational complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信