一类基于个体的模型

M. Lachowicz
{"title":"一类基于个体的模型","authors":"M. Lachowicz","doi":"10.11145/J.BIOMATH.2018.04.127","DOIUrl":null,"url":null,"abstract":"We discuss a class of mathematical models of biological systems at microscopic level - i.e. at the level of interacting individuals of a population. The class leads to partially integral stochastic semigroups- [5]. We state general conditions guaranteeing the asymptotic stability.  In particular under some rather restrictive assumptions we observe that any, even non-factorized, initial probability density tends in the evolution to a factorized equilibrium probability density - [4]. We discuss possible applications of the general theory such as redistribution of individuals - [2], thermal denaturation of DNA [1], and tendon healing process - [3]. [1] M. Debowski, M. Lachowicz, and Z. Szymanska, Microscopic description of DNA thermal denaturation, to appear.  [2] M. Dolfin, M. Lachowicz, and A. Schadschneider, A microscopic model of redistribution of individuals inside an 'elevator', In Modern Problems in Applied Analysis, P. Drygas and S. Rogosin (Eds.), Bikhauser, Basel (2018), 77--86; DOI: 10.1007/978--3--319--72640-3. [3] G. Dudziuk, M. Lachowicz, H. Leszczynski, and Z. Szymanska, A simple model of collagen remodeling, to appear. [4] M. Lachowicz, A class of microscopic individual models corresponding to the macroscopic logistic growth, Math. Methods Appl. Sci., 2017, on--line, DOI: 10.1002/mma.4680 [5] K. Pichor and R. Rudnicki, Continuous Markov semigroups and stability of transport equations, J. Math. Analysis Appl. 249 , 2000, 668--685, DOI: 10.1006/jmaa.2000.6968","PeriodicalId":370233,"journal":{"name":"Biomath Communications Supplement","volume":"29 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A class of individual-based models\",\"authors\":\"M. Lachowicz\",\"doi\":\"10.11145/J.BIOMATH.2018.04.127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss a class of mathematical models of biological systems at microscopic level - i.e. at the level of interacting individuals of a population. The class leads to partially integral stochastic semigroups- [5]. We state general conditions guaranteeing the asymptotic stability.  In particular under some rather restrictive assumptions we observe that any, even non-factorized, initial probability density tends in the evolution to a factorized equilibrium probability density - [4]. We discuss possible applications of the general theory such as redistribution of individuals - [2], thermal denaturation of DNA [1], and tendon healing process - [3]. [1] M. Debowski, M. Lachowicz, and Z. Szymanska, Microscopic description of DNA thermal denaturation, to appear.  [2] M. Dolfin, M. Lachowicz, and A. Schadschneider, A microscopic model of redistribution of individuals inside an 'elevator', In Modern Problems in Applied Analysis, P. Drygas and S. Rogosin (Eds.), Bikhauser, Basel (2018), 77--86; DOI: 10.1007/978--3--319--72640-3. [3] G. Dudziuk, M. Lachowicz, H. Leszczynski, and Z. Szymanska, A simple model of collagen remodeling, to appear. [4] M. Lachowicz, A class of microscopic individual models corresponding to the macroscopic logistic growth, Math. Methods Appl. Sci., 2017, on--line, DOI: 10.1002/mma.4680 [5] K. Pichor and R. Rudnicki, Continuous Markov semigroups and stability of transport equations, J. Math. Analysis Appl. 249 , 2000, 668--685, DOI: 10.1006/jmaa.2000.6968\",\"PeriodicalId\":370233,\"journal\":{\"name\":\"Biomath Communications Supplement\",\"volume\":\"29 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomath Communications Supplement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11145/J.BIOMATH.2018.04.127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomath Communications Supplement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11145/J.BIOMATH.2018.04.127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们讨论了一类生物系统的数学模型在微观水平-即在相互作用的个体水平的群体。该类导致部分积分随机半群-[5]。给出了保证渐近稳定的一般条件。特别是在一些相当严格的假设下,我们观察到任何,甚至是非因式的,初始概率密度在演化中趋向于因式平衡概率密度-[4]。我们讨论了一般理论的可能应用,如个体的再分配- [2],DNA的热变性[1]和肌腱愈合过程-[3]。[1]陈晓明,陈晓明,陈晓明。DNA热变性的微观描述。[2]杜尔芬、李晓明、薛德施耐德,“电梯”内部个体再分配的微观模型,应用分析中的现代问题,P. Drygas和S. Rogosin(主编),Bikhauser,巴塞尔(2018),77—86;DOI: 10.1007/978 - 3 - 319 - 72640 - 3。[3]张晓明,张晓明,张晓明,等。胶原蛋白重塑模型的研究进展。[4]李志刚,李志刚,李志刚,一类微观个体模型与宏观logistic增长的对应关系,数学。方法:。科学。, 2017,在线,DOI: 10.1002/mma。[5]张建军,李建军,连续马尔可夫半群和输运方程的稳定性,数学学报。应用化学,2004,24,668—685,DOI: 10.1006/jmaa.2000.6968
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A class of individual-based models
We discuss a class of mathematical models of biological systems at microscopic level - i.e. at the level of interacting individuals of a population. The class leads to partially integral stochastic semigroups- [5]. We state general conditions guaranteeing the asymptotic stability.  In particular under some rather restrictive assumptions we observe that any, even non-factorized, initial probability density tends in the evolution to a factorized equilibrium probability density - [4]. We discuss possible applications of the general theory such as redistribution of individuals - [2], thermal denaturation of DNA [1], and tendon healing process - [3]. [1] M. Debowski, M. Lachowicz, and Z. Szymanska, Microscopic description of DNA thermal denaturation, to appear.  [2] M. Dolfin, M. Lachowicz, and A. Schadschneider, A microscopic model of redistribution of individuals inside an 'elevator', In Modern Problems in Applied Analysis, P. Drygas and S. Rogosin (Eds.), Bikhauser, Basel (2018), 77--86; DOI: 10.1007/978--3--319--72640-3. [3] G. Dudziuk, M. Lachowicz, H. Leszczynski, and Z. Szymanska, A simple model of collagen remodeling, to appear. [4] M. Lachowicz, A class of microscopic individual models corresponding to the macroscopic logistic growth, Math. Methods Appl. Sci., 2017, on--line, DOI: 10.1002/mma.4680 [5] K. Pichor and R. Rudnicki, Continuous Markov semigroups and stability of transport equations, J. Math. Analysis Appl. 249 , 2000, 668--685, DOI: 10.1006/jmaa.2000.6968
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信