{"title":"一类基于个体的模型","authors":"M. Lachowicz","doi":"10.11145/J.BIOMATH.2018.04.127","DOIUrl":null,"url":null,"abstract":"We discuss a class of mathematical models of biological systems at microscopic level - i.e. at the level of interacting individuals of a population. The class leads to partially integral stochastic semigroups- [5]. We state general conditions guaranteeing the asymptotic stability. In particular under some rather restrictive assumptions we observe that any, even non-factorized, initial probability density tends in the evolution to a factorized equilibrium probability density - [4]. We discuss possible applications of the general theory such as redistribution of individuals - [2], thermal denaturation of DNA [1], and tendon healing process - [3]. [1] M. Debowski, M. Lachowicz, and Z. Szymanska, Microscopic description of DNA thermal denaturation, to appear. [2] M. Dolfin, M. Lachowicz, and A. Schadschneider, A microscopic model of redistribution of individuals inside an 'elevator', In Modern Problems in Applied Analysis, P. Drygas and S. Rogosin (Eds.), Bikhauser, Basel (2018), 77--86; DOI: 10.1007/978--3--319--72640-3. [3] G. Dudziuk, M. Lachowicz, H. Leszczynski, and Z. Szymanska, A simple model of collagen remodeling, to appear. [4] M. Lachowicz, A class of microscopic individual models corresponding to the macroscopic logistic growth, Math. Methods Appl. Sci., 2017, on--line, DOI: 10.1002/mma.4680 [5] K. Pichor and R. Rudnicki, Continuous Markov semigroups and stability of transport equations, J. Math. Analysis Appl. 249 , 2000, 668--685, DOI: 10.1006/jmaa.2000.6968","PeriodicalId":370233,"journal":{"name":"Biomath Communications Supplement","volume":"29 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A class of individual-based models\",\"authors\":\"M. Lachowicz\",\"doi\":\"10.11145/J.BIOMATH.2018.04.127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss a class of mathematical models of biological systems at microscopic level - i.e. at the level of interacting individuals of a population. The class leads to partially integral stochastic semigroups- [5]. We state general conditions guaranteeing the asymptotic stability. In particular under some rather restrictive assumptions we observe that any, even non-factorized, initial probability density tends in the evolution to a factorized equilibrium probability density - [4]. We discuss possible applications of the general theory such as redistribution of individuals - [2], thermal denaturation of DNA [1], and tendon healing process - [3]. [1] M. Debowski, M. Lachowicz, and Z. Szymanska, Microscopic description of DNA thermal denaturation, to appear. [2] M. Dolfin, M. Lachowicz, and A. Schadschneider, A microscopic model of redistribution of individuals inside an 'elevator', In Modern Problems in Applied Analysis, P. Drygas and S. Rogosin (Eds.), Bikhauser, Basel (2018), 77--86; DOI: 10.1007/978--3--319--72640-3. [3] G. Dudziuk, M. Lachowicz, H. Leszczynski, and Z. Szymanska, A simple model of collagen remodeling, to appear. [4] M. Lachowicz, A class of microscopic individual models corresponding to the macroscopic logistic growth, Math. Methods Appl. Sci., 2017, on--line, DOI: 10.1002/mma.4680 [5] K. Pichor and R. Rudnicki, Continuous Markov semigroups and stability of transport equations, J. Math. Analysis Appl. 249 , 2000, 668--685, DOI: 10.1006/jmaa.2000.6968\",\"PeriodicalId\":370233,\"journal\":{\"name\":\"Biomath Communications Supplement\",\"volume\":\"29 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomath Communications Supplement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11145/J.BIOMATH.2018.04.127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomath Communications Supplement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11145/J.BIOMATH.2018.04.127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We discuss a class of mathematical models of biological systems at microscopic level - i.e. at the level of interacting individuals of a population. The class leads to partially integral stochastic semigroups- [5]. We state general conditions guaranteeing the asymptotic stability. In particular under some rather restrictive assumptions we observe that any, even non-factorized, initial probability density tends in the evolution to a factorized equilibrium probability density - [4]. We discuss possible applications of the general theory such as redistribution of individuals - [2], thermal denaturation of DNA [1], and tendon healing process - [3]. [1] M. Debowski, M. Lachowicz, and Z. Szymanska, Microscopic description of DNA thermal denaturation, to appear. [2] M. Dolfin, M. Lachowicz, and A. Schadschneider, A microscopic model of redistribution of individuals inside an 'elevator', In Modern Problems in Applied Analysis, P. Drygas and S. Rogosin (Eds.), Bikhauser, Basel (2018), 77--86; DOI: 10.1007/978--3--319--72640-3. [3] G. Dudziuk, M. Lachowicz, H. Leszczynski, and Z. Szymanska, A simple model of collagen remodeling, to appear. [4] M. Lachowicz, A class of microscopic individual models corresponding to the macroscopic logistic growth, Math. Methods Appl. Sci., 2017, on--line, DOI: 10.1002/mma.4680 [5] K. Pichor and R. Rudnicki, Continuous Markov semigroups and stability of transport equations, J. Math. Analysis Appl. 249 , 2000, 668--685, DOI: 10.1006/jmaa.2000.6968