{"title":"电网作为一个基于主体的市场系统:探讨政策对可持续性的影响","authors":"Steven Hoffenson, M. Wiśniowski","doi":"10.1115/DETC2018-86031","DOIUrl":null,"url":null,"abstract":"Electricity generation is a major source of air pollution, contributing to nearly one-third of the total greenhouse gas emissions in the United States. As with most goods, production must keep up with the projected consumer demand, and the industry is subject to government regulations at the federal, state, and local levels. This study models the New Jersey electric grid as a market system, using agent-based modeling to represent individual consumers and power companies making utility-maximizing decisions. Each consumer agent is prescribed a unique value function that includes factors such as income, energy intensity, and environmental sensitivity, and they are able to make decisions about how much energy they use and whether they opt into a renewable energy program. Power producers are modeled to keep up with demand and minimize their cost per unit of electricity produced, and they include options to prefer either on-demand or renewable energy sources. Using this model, different scenarios are examined with respect to producer strategy and government policy. The results provide a proof-of-concept for the modeling approach, and they reveal interesting trends about how the markets are expected to react under different scenarios.","PeriodicalId":138856,"journal":{"name":"Volume 2A: 44th Design Automation Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Electricity Grid As an Agent-Based Market System: Exploring the Effects of Policy on Sustainability\",\"authors\":\"Steven Hoffenson, M. Wiśniowski\",\"doi\":\"10.1115/DETC2018-86031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electricity generation is a major source of air pollution, contributing to nearly one-third of the total greenhouse gas emissions in the United States. As with most goods, production must keep up with the projected consumer demand, and the industry is subject to government regulations at the federal, state, and local levels. This study models the New Jersey electric grid as a market system, using agent-based modeling to represent individual consumers and power companies making utility-maximizing decisions. Each consumer agent is prescribed a unique value function that includes factors such as income, energy intensity, and environmental sensitivity, and they are able to make decisions about how much energy they use and whether they opt into a renewable energy program. Power producers are modeled to keep up with demand and minimize their cost per unit of electricity produced, and they include options to prefer either on-demand or renewable energy sources. Using this model, different scenarios are examined with respect to producer strategy and government policy. The results provide a proof-of-concept for the modeling approach, and they reveal interesting trends about how the markets are expected to react under different scenarios.\",\"PeriodicalId\":138856,\"journal\":{\"name\":\"Volume 2A: 44th Design Automation Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2A: 44th Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/DETC2018-86031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2A: 44th Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/DETC2018-86031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Electricity Grid As an Agent-Based Market System: Exploring the Effects of Policy on Sustainability
Electricity generation is a major source of air pollution, contributing to nearly one-third of the total greenhouse gas emissions in the United States. As with most goods, production must keep up with the projected consumer demand, and the industry is subject to government regulations at the federal, state, and local levels. This study models the New Jersey electric grid as a market system, using agent-based modeling to represent individual consumers and power companies making utility-maximizing decisions. Each consumer agent is prescribed a unique value function that includes factors such as income, energy intensity, and environmental sensitivity, and they are able to make decisions about how much energy they use and whether they opt into a renewable energy program. Power producers are modeled to keep up with demand and minimize their cost per unit of electricity produced, and they include options to prefer either on-demand or renewable energy sources. Using this model, different scenarios are examined with respect to producer strategy and government policy. The results provide a proof-of-concept for the modeling approach, and they reveal interesting trends about how the markets are expected to react under different scenarios.