基于临时动态序列对齐的心电信号分析

V. Molina, Gerardo Ceballos, Hermann Dávila
{"title":"基于临时动态序列对齐的心电信号分析","authors":"V. Molina, Gerardo Ceballos, Hermann Dávila","doi":"10.1109/STSIVA.2013.6644910","DOIUrl":null,"url":null,"abstract":"This paper shows a feature extraction method for electrocardiographic signals (ECG) based on dynamic programming algorithms. Specifically, we apply local alignment technique for recognition of template in continuous ECG signal. First, we code the signal to characters in base of sign and magnitude of first derivative, then we apply local alignment algorithm to search a complex PQRST template in target continuous ECG signal. Finally, we arrange the data for direct measurement of morphological features in all PQRST segment detected. To validate these algorithms, we contrast it with conventional analysis making measurement of QT segments in MIT's data base1. We obtain processing time at least a hundred times lower than those obtained by conventional manual analysis and error rates in QT measurement below 5%. The automated massive analysis of ECG presented in this work is suitable for posprocessing methods such as datamining, classification and assisted diagnosis of cardiac pathologies.","PeriodicalId":359994,"journal":{"name":"Symposium of Signals, Images and Artificial Vision - 2013: STSIVA - 2013","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"ECG signal analysis using temporary dynamic sequence alignment\",\"authors\":\"V. Molina, Gerardo Ceballos, Hermann Dávila\",\"doi\":\"10.1109/STSIVA.2013.6644910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper shows a feature extraction method for electrocardiographic signals (ECG) based on dynamic programming algorithms. Specifically, we apply local alignment technique for recognition of template in continuous ECG signal. First, we code the signal to characters in base of sign and magnitude of first derivative, then we apply local alignment algorithm to search a complex PQRST template in target continuous ECG signal. Finally, we arrange the data for direct measurement of morphological features in all PQRST segment detected. To validate these algorithms, we contrast it with conventional analysis making measurement of QT segments in MIT's data base1. We obtain processing time at least a hundred times lower than those obtained by conventional manual analysis and error rates in QT measurement below 5%. The automated massive analysis of ECG presented in this work is suitable for posprocessing methods such as datamining, classification and assisted diagnosis of cardiac pathologies.\",\"PeriodicalId\":359994,\"journal\":{\"name\":\"Symposium of Signals, Images and Artificial Vision - 2013: STSIVA - 2013\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposium of Signals, Images and Artificial Vision - 2013: STSIVA - 2013\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STSIVA.2013.6644910\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium of Signals, Images and Artificial Vision - 2013: STSIVA - 2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STSIVA.2013.6644910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种基于动态规划算法的心电信号特征提取方法。具体来说,我们将局部对齐技术应用于连续心电信号的模板识别。首先将信号编码为以一阶导数的符号和幅度为基数的字符,然后应用局部对齐算法在目标连续心电信号中搜索复PQRST模板。最后,我们对所有检测到的PQRST片段的形态学特征进行直接测量。为了验证这些算法,我们将其与在MIT数据库中测量QT段的传统分析进行对比1。我们得到的处理时间比传统的人工分析至少低100倍,QT测量的错误率低于5%。本文提出的心电自动海量分析方法适用于心脏病理的数据挖掘、分类和辅助诊断等后处理方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ECG signal analysis using temporary dynamic sequence alignment
This paper shows a feature extraction method for electrocardiographic signals (ECG) based on dynamic programming algorithms. Specifically, we apply local alignment technique for recognition of template in continuous ECG signal. First, we code the signal to characters in base of sign and magnitude of first derivative, then we apply local alignment algorithm to search a complex PQRST template in target continuous ECG signal. Finally, we arrange the data for direct measurement of morphological features in all PQRST segment detected. To validate these algorithms, we contrast it with conventional analysis making measurement of QT segments in MIT's data base1. We obtain processing time at least a hundred times lower than those obtained by conventional manual analysis and error rates in QT measurement below 5%. The automated massive analysis of ECG presented in this work is suitable for posprocessing methods such as datamining, classification and assisted diagnosis of cardiac pathologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信