奇异多变量系统传输零点的表征与计算

P. Misra, G. Gu, P. Van Dooren
{"title":"奇异多变量系统传输零点的表征与计算","authors":"P. Misra, G. Gu, P. Van Dooren","doi":"10.1109/CDC.1990.203596","DOIUrl":null,"url":null,"abstract":"Presented is a state-space characterization of transmission zeros of 'singular' linear multivariable system models (E, A, B, C, D), where E is a singular matrix. The characterization is based on defining the transmission zeros as the finite zeros of the transfer function matrix of the given 5-tuple. Based on the proposed characterization, a numerical algorithm is developed for computation of the transmission zeros of singular systems. Several numerical examples are included to illustrate the proposed scheme.<<ETX>>","PeriodicalId":287089,"journal":{"name":"29th IEEE Conference on Decision and Control","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Characterization and computation of transmission zeros of singular multivariable systems\",\"authors\":\"P. Misra, G. Gu, P. Van Dooren\",\"doi\":\"10.1109/CDC.1990.203596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Presented is a state-space characterization of transmission zeros of 'singular' linear multivariable system models (E, A, B, C, D), where E is a singular matrix. The characterization is based on defining the transmission zeros as the finite zeros of the transfer function matrix of the given 5-tuple. Based on the proposed characterization, a numerical algorithm is developed for computation of the transmission zeros of singular systems. Several numerical examples are included to illustrate the proposed scheme.<<ETX>>\",\"PeriodicalId\":287089,\"journal\":{\"name\":\"29th IEEE Conference on Decision and Control\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"29th IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1990.203596\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"29th IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1990.203596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

给出了“奇异”线性多变量系统模型(E, a, B, C, D)的传输零点的状态空间表征,其中E是一个奇异矩阵。该表征是基于将传递零点定义为给定5元组的传递函数矩阵的有限零点。在此基础上,提出了一种计算奇异系统传输零点的数值算法。文中给出了几个数值算例来说明所提出的方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization and computation of transmission zeros of singular multivariable systems
Presented is a state-space characterization of transmission zeros of 'singular' linear multivariable system models (E, A, B, C, D), where E is a singular matrix. The characterization is based on defining the transmission zeros as the finite zeros of the transfer function matrix of the given 5-tuple. Based on the proposed characterization, a numerical algorithm is developed for computation of the transmission zeros of singular systems. Several numerical examples are included to illustrate the proposed scheme.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信