基于外观的手语识别的动态规划跟踪

P. Dreuw, Thomas Deselaers, David Rybach, Daniel Keysers, H. Ney
{"title":"基于外观的手语识别的动态规划跟踪","authors":"P. Dreuw, Thomas Deselaers, David Rybach, Daniel Keysers, H. Ney","doi":"10.1109/FGR.2006.107","DOIUrl":null,"url":null,"abstract":"We present a novel tracking algorithm that uses dynamic programming to determine the path of target objects and that is able to track an arbitrary number of different objects. The traceback method used to track the targets avoids taking possibly wrong local decisions and thus reconstructs the best tracking paths using the whole observation sequence. The tracking method can be compared to the nonlinear time alignment in automatic speech recognition (ASR) and it can analogously be integrated into a hidden Markov model based recognition process. We show how the method can be applied to the tracking of hands and the face for automatic sign language recognition","PeriodicalId":109260,"journal":{"name":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":"{\"title\":\"Tracking using dynamic programming for appearance-based sign language recognition\",\"authors\":\"P. Dreuw, Thomas Deselaers, David Rybach, Daniel Keysers, H. Ney\",\"doi\":\"10.1109/FGR.2006.107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel tracking algorithm that uses dynamic programming to determine the path of target objects and that is able to track an arbitrary number of different objects. The traceback method used to track the targets avoids taking possibly wrong local decisions and thus reconstructs the best tracking paths using the whole observation sequence. The tracking method can be compared to the nonlinear time alignment in automatic speech recognition (ASR) and it can analogously be integrated into a hidden Markov model based recognition process. We show how the method can be applied to the tracking of hands and the face for automatic sign language recognition\",\"PeriodicalId\":109260,\"journal\":{\"name\":\"7th International Conference on Automatic Face and Gesture Recognition (FGR06)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"68\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"7th International Conference on Automatic Face and Gesture Recognition (FGR06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FGR.2006.107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FGR.2006.107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68

摘要

我们提出了一种新的跟踪算法,该算法使用动态规划来确定目标物体的路径,并且能够跟踪任意数量的不同物体。采用回溯法对目标进行跟踪,避免了可能出现的局部决策错误,从而利用整个观测序列重构出最佳跟踪路径。该跟踪方法可与自动语音识别(ASR)中的非线性时间对准进行比较,并可类比地集成到基于隐马尔可夫模型的识别过程中。我们展示了如何将该方法应用于手部和面部的跟踪,以实现自动手语识别
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tracking using dynamic programming for appearance-based sign language recognition
We present a novel tracking algorithm that uses dynamic programming to determine the path of target objects and that is able to track an arbitrary number of different objects. The traceback method used to track the targets avoids taking possibly wrong local decisions and thus reconstructs the best tracking paths using the whole observation sequence. The tracking method can be compared to the nonlinear time alignment in automatic speech recognition (ASR) and it can analogously be integrated into a hidden Markov model based recognition process. We show how the method can be applied to the tracking of hands and the face for automatic sign language recognition
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信