基于遗传优化ANFIS的智能导航系统

M. Malleswaran, V. Vaidehi, R. A. Joseph
{"title":"基于遗传优化ANFIS的智能导航系统","authors":"M. Malleswaran, V. Vaidehi, R. A. Joseph","doi":"10.1109/ICOAC.2011.6165207","DOIUrl":null,"url":null,"abstract":"Global positioning System (GPS) and Inertial Navigation System (INS) data can be integrated together to provide a reliable navigation. This paper presents an approach of solving GPS/INS data integration problem, without the need of modeling the characteristics of GPS and INS sensors. This approach uses Genetically optimized Adaptive Neuro-Fuzzy Inference System (GANFIS) as an alternative to the conventional Kalman filter approach in which it is mandatory to model the entire system.","PeriodicalId":369712,"journal":{"name":"2011 Third International Conference on Advanced Computing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Genetically optimized ANFIS based Intelligent Navigation System\",\"authors\":\"M. Malleswaran, V. Vaidehi, R. A. Joseph\",\"doi\":\"10.1109/ICOAC.2011.6165207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Global positioning System (GPS) and Inertial Navigation System (INS) data can be integrated together to provide a reliable navigation. This paper presents an approach of solving GPS/INS data integration problem, without the need of modeling the characteristics of GPS and INS sensors. This approach uses Genetically optimized Adaptive Neuro-Fuzzy Inference System (GANFIS) as an alternative to the conventional Kalman filter approach in which it is mandatory to model the entire system.\",\"PeriodicalId\":369712,\"journal\":{\"name\":\"2011 Third International Conference on Advanced Computing\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Third International Conference on Advanced Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOAC.2011.6165207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Third International Conference on Advanced Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOAC.2011.6165207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

全球定位系统(GPS)和惯性导航系统(INS)数据可以集成在一起,提供可靠的导航。本文提出了一种不需要对GPS和INS传感器特性建模的情况下,解决GPS/INS数据集成问题的方法。该方法使用遗传优化自适应神经模糊推理系统(GANFIS)作为传统卡尔曼滤波方法的替代方法,其中必须对整个系统进行建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetically optimized ANFIS based Intelligent Navigation System
Global positioning System (GPS) and Inertial Navigation System (INS) data can be integrated together to provide a reliable navigation. This paper presents an approach of solving GPS/INS data integration problem, without the need of modeling the characteristics of GPS and INS sensors. This approach uses Genetically optimized Adaptive Neuro-Fuzzy Inference System (GANFIS) as an alternative to the conventional Kalman filter approach in which it is mandatory to model the entire system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信