{"title":"别忘了你的根!使用来源数据进行透明和可解释的机器学习模型开发","authors":"Sophie F. Jentzsch, N. Hochgeschwender","doi":"10.1109/ASEW.2019.00025","DOIUrl":null,"url":null,"abstract":"Explaining reasoning and behaviour of artificial intelligent systems to human users becomes increasingly urgent, especially in the field of machine learning. Many recent contributions approach this issue with post-hoc methods, meaning they consider the final system and its outcomes, while the roots of included artefacts are widely neglected. However, we argue in this position paper that there needs to be a stronger focus on the development process. Without insights into specific design decisions and meta information that accrue during the development an accurate explanation of the resulting model is hardly possible. To remedy this situation we propose to increase process transparency by applying provenance methods, which serves also as a basis for increased explainability.","PeriodicalId":277020,"journal":{"name":"2019 34th IEEE/ACM International Conference on Automated Software Engineering Workshop (ASEW)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Don't Forget Your Roots! Using Provenance Data for Transparent and Explainable Development of Machine Learning Models\",\"authors\":\"Sophie F. Jentzsch, N. Hochgeschwender\",\"doi\":\"10.1109/ASEW.2019.00025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Explaining reasoning and behaviour of artificial intelligent systems to human users becomes increasingly urgent, especially in the field of machine learning. Many recent contributions approach this issue with post-hoc methods, meaning they consider the final system and its outcomes, while the roots of included artefacts are widely neglected. However, we argue in this position paper that there needs to be a stronger focus on the development process. Without insights into specific design decisions and meta information that accrue during the development an accurate explanation of the resulting model is hardly possible. To remedy this situation we propose to increase process transparency by applying provenance methods, which serves also as a basis for increased explainability.\",\"PeriodicalId\":277020,\"journal\":{\"name\":\"2019 34th IEEE/ACM International Conference on Automated Software Engineering Workshop (ASEW)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 34th IEEE/ACM International Conference on Automated Software Engineering Workshop (ASEW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASEW.2019.00025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 34th IEEE/ACM International Conference on Automated Software Engineering Workshop (ASEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASEW.2019.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Don't Forget Your Roots! Using Provenance Data for Transparent and Explainable Development of Machine Learning Models
Explaining reasoning and behaviour of artificial intelligent systems to human users becomes increasingly urgent, especially in the field of machine learning. Many recent contributions approach this issue with post-hoc methods, meaning they consider the final system and its outcomes, while the roots of included artefacts are widely neglected. However, we argue in this position paper that there needs to be a stronger focus on the development process. Without insights into specific design decisions and meta information that accrue during the development an accurate explanation of the resulting model is hardly possible. To remedy this situation we propose to increase process transparency by applying provenance methods, which serves also as a basis for increased explainability.