一种高效的模糊定量关联规则挖掘聚类算法

Been-Chian Chien, Zin Lin, T. Hong
{"title":"一种高效的模糊定量关联规则挖掘聚类算法","authors":"Been-Chian Chien, Zin Lin, T. Hong","doi":"10.1109/NAFIPS.2001.943736","DOIUrl":null,"url":null,"abstract":"Mining association rules on categorical data has been discussed widely. It is a relatively difficult problem in the discovery of association rules from numerical data, since the reasonable intervals for unknown numerical attributes or quantitative data may not be discriminated easily. We propose an efficient hierarchical clustering algorithm based on variation of density to solve the problem of interval partition. We define two main characteristics of clustering numerical data: relative inter-connectivity and relative closeness. By giving a proper parameter, /spl alpha/, to determine the importance between relative closeness and relative inter-connectivity, the proposed approach can generate a reasonable interval automatically for the user. The experimental results show that the proposed clustering algorithm can have good performance on both clustering results and speed.","PeriodicalId":227374,"journal":{"name":"Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569)","volume":"230 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"An efficient clustering algorithm for mining fuzzy quantitative association rules\",\"authors\":\"Been-Chian Chien, Zin Lin, T. Hong\",\"doi\":\"10.1109/NAFIPS.2001.943736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mining association rules on categorical data has been discussed widely. It is a relatively difficult problem in the discovery of association rules from numerical data, since the reasonable intervals for unknown numerical attributes or quantitative data may not be discriminated easily. We propose an efficient hierarchical clustering algorithm based on variation of density to solve the problem of interval partition. We define two main characteristics of clustering numerical data: relative inter-connectivity and relative closeness. By giving a proper parameter, /spl alpha/, to determine the importance between relative closeness and relative inter-connectivity, the proposed approach can generate a reasonable interval automatically for the user. The experimental results show that the proposed clustering algorithm can have good performance on both clustering results and speed.\",\"PeriodicalId\":227374,\"journal\":{\"name\":\"Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569)\",\"volume\":\"230 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAFIPS.2001.943736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2001.943736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

分类数据的关联规则挖掘已经被广泛讨论。从数值数据中发现关联规则是一个比较困难的问题,因为未知数值属性或定量数据的合理区间不容易判别。针对区间划分问题,提出了一种高效的基于密度变化的分层聚类算法。我们定义了数值数据聚类的两个主要特征:相对互联性和相对紧密性。该方法通过给出一个合适的参数/spl alpha/来确定相对紧密度和相对互连度之间的重要性,从而为用户自动生成一个合理的区间。实验结果表明,本文提出的聚类算法在聚类结果和速度上都有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient clustering algorithm for mining fuzzy quantitative association rules
Mining association rules on categorical data has been discussed widely. It is a relatively difficult problem in the discovery of association rules from numerical data, since the reasonable intervals for unknown numerical attributes or quantitative data may not be discriminated easily. We propose an efficient hierarchical clustering algorithm based on variation of density to solve the problem of interval partition. We define two main characteristics of clustering numerical data: relative inter-connectivity and relative closeness. By giving a proper parameter, /spl alpha/, to determine the importance between relative closeness and relative inter-connectivity, the proposed approach can generate a reasonable interval automatically for the user. The experimental results show that the proposed clustering algorithm can have good performance on both clustering results and speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信