基于机器学习的监视雷达高级杂波抑制方法

Malwinder Singh, Shashi Ranjan Kumar, Bhukya Soumya Mishra
{"title":"基于机器学习的监视雷达高级杂波抑制方法","authors":"Malwinder Singh, Shashi Ranjan Kumar, Bhukya Soumya Mishra","doi":"10.5121/csit.2023.130609","DOIUrl":null,"url":null,"abstract":"This research focuses on improving the ground clutter mitigation by integrating ML methods with traditional methods (such as CFAR and Doppler processing) of X-band surveillance radar. Discriminative machine learning methods are used as they have the ability to learn without the knowledge of distribution type. The techniques used to accomplish research includes raw IQ radar data collection, data labelling, and feature generation, statistical significance of generated features, model (DT, SVM and ANN) training and model evaluation. The results indicate improvement in mitigation of ground clutter for different scenarios. The research also discusses the future work related to this research.","PeriodicalId":110134,"journal":{"name":"Advanced Information Technologies and Applications","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced Clutter Mitigation Method for Surveillance Radar using Machine Learning\",\"authors\":\"Malwinder Singh, Shashi Ranjan Kumar, Bhukya Soumya Mishra\",\"doi\":\"10.5121/csit.2023.130609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research focuses on improving the ground clutter mitigation by integrating ML methods with traditional methods (such as CFAR and Doppler processing) of X-band surveillance radar. Discriminative machine learning methods are used as they have the ability to learn without the knowledge of distribution type. The techniques used to accomplish research includes raw IQ radar data collection, data labelling, and feature generation, statistical significance of generated features, model (DT, SVM and ANN) training and model evaluation. The results indicate improvement in mitigation of ground clutter for different scenarios. The research also discusses the future work related to this research.\",\"PeriodicalId\":110134,\"journal\":{\"name\":\"Advanced Information Technologies and Applications\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Information Technologies and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/csit.2023.130609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Information Technologies and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2023.130609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的研究重点是将机器学习方法与x波段监视雷达的传统方法(如CFAR和多普勒处理)相结合,提高对地杂波的抑制能力。判别式机器学习方法可以在不知道分布类型的情况下进行学习。用于完成研究的技术包括原始IQ雷达数据收集,数据标记,特征生成,生成特征的统计显著性,模型(DT, SVM和ANN)训练和模型评估。结果表明,在不同的情况下,地面杂波的缓解有所改善。本研究还讨论了与本研究相关的未来工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced Clutter Mitigation Method for Surveillance Radar using Machine Learning
This research focuses on improving the ground clutter mitigation by integrating ML methods with traditional methods (such as CFAR and Doppler processing) of X-band surveillance radar. Discriminative machine learning methods are used as they have the ability to learn without the knowledge of distribution type. The techniques used to accomplish research includes raw IQ radar data collection, data labelling, and feature generation, statistical significance of generated features, model (DT, SVM and ANN) training and model evaluation. The results indicate improvement in mitigation of ground clutter for different scenarios. The research also discusses the future work related to this research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信