Eldar abanoviè, Gediminas Stankevièius, Dalius Matuzevièius
{"title":"基于深度神经网络的视网膜图像配准特征描述符","authors":"Eldar abanoviè, Gediminas Stankevièius, Dalius Matuzevièius","doi":"10.1109/AIEEE.2018.8592033","DOIUrl":null,"url":null,"abstract":"Feature description is an important step in image registration work flow. Discriminative power of feature descriptors affects feature matching performance and overall results of image registration. Deep Neural Network-based (DNN) feature descriptors are emerging trend in image registration tasks, often performing equally or better than hand-crafted ones. However, there are no learned local feature descriptors, specifically trained for human retinal image registration. In this paper we propose DNN-based feature descriptor that was trained on retinal image patches and compare it to well-known hand-crafted feature descriptors. Training dataset of image patches was compiled from nine online datasets of eye fundus images. Learned feature descriptor was compared to other descriptors using Fundus Image Registration dataset (FIRE), measuring amount of correctly matched ground truth points (Rank-1 metric) after feature description. We compare the performance of various feature descriptors applied for retinal image feature matching.","PeriodicalId":198244,"journal":{"name":"2018 IEEE 6th Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Deep Neural Network-based Feature Descriptor for Retinal Image Registration\",\"authors\":\"Eldar abanoviè, Gediminas Stankevièius, Dalius Matuzevièius\",\"doi\":\"10.1109/AIEEE.2018.8592033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature description is an important step in image registration work flow. Discriminative power of feature descriptors affects feature matching performance and overall results of image registration. Deep Neural Network-based (DNN) feature descriptors are emerging trend in image registration tasks, often performing equally or better than hand-crafted ones. However, there are no learned local feature descriptors, specifically trained for human retinal image registration. In this paper we propose DNN-based feature descriptor that was trained on retinal image patches and compare it to well-known hand-crafted feature descriptors. Training dataset of image patches was compiled from nine online datasets of eye fundus images. Learned feature descriptor was compared to other descriptors using Fundus Image Registration dataset (FIRE), measuring amount of correctly matched ground truth points (Rank-1 metric) after feature description. We compare the performance of various feature descriptors applied for retinal image feature matching.\",\"PeriodicalId\":198244,\"journal\":{\"name\":\"2018 IEEE 6th Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 6th Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIEEE.2018.8592033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 6th Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIEEE.2018.8592033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Neural Network-based Feature Descriptor for Retinal Image Registration
Feature description is an important step in image registration work flow. Discriminative power of feature descriptors affects feature matching performance and overall results of image registration. Deep Neural Network-based (DNN) feature descriptors are emerging trend in image registration tasks, often performing equally or better than hand-crafted ones. However, there are no learned local feature descriptors, specifically trained for human retinal image registration. In this paper we propose DNN-based feature descriptor that was trained on retinal image patches and compare it to well-known hand-crafted feature descriptors. Training dataset of image patches was compiled from nine online datasets of eye fundus images. Learned feature descriptor was compared to other descriptors using Fundus Image Registration dataset (FIRE), measuring amount of correctly matched ground truth points (Rank-1 metric) after feature description. We compare the performance of various feature descriptors applied for retinal image feature matching.