{"title":"扩展视频解码能量模型360°和HDR视频格式在HEVC","authors":"Matthias Kränzler, Christian Herglotz, A. Kaup","doi":"10.1109/PCS48520.2019.8954563","DOIUrl":null,"url":null,"abstract":"Research has shown that decoder energy models are helpful tools for improving the energy efficiency in video playback applications. For example, an accurate feature-based bit stream model can reduce the energy consumption of the decoding process. However, until now only sequences of the SDR video format were investigated. Therefore, this paper shows that the decoding energy of HEVC-coded bit streams can be estimated precisely for different video formats and coding bit depths. Therefore, we compare a state-of-the-art model from the literature with a proposed model. We show that bit streams of the 360◦, HDR, and fisheye video format can be estimated with a mean estimation error lower than 3.88% if the setups have the same coding bit depth. Furthermore, it is shown that on average, the energy demand for the decoding of bit streams with a bit depth of 10-bit is 55% higher than with 8-bit.","PeriodicalId":237809,"journal":{"name":"2019 Picture Coding Symposium (PCS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Extending Video Decoding Energy Models for 360° and HDR Video Formats in HEVC\",\"authors\":\"Matthias Kränzler, Christian Herglotz, A. Kaup\",\"doi\":\"10.1109/PCS48520.2019.8954563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Research has shown that decoder energy models are helpful tools for improving the energy efficiency in video playback applications. For example, an accurate feature-based bit stream model can reduce the energy consumption of the decoding process. However, until now only sequences of the SDR video format were investigated. Therefore, this paper shows that the decoding energy of HEVC-coded bit streams can be estimated precisely for different video formats and coding bit depths. Therefore, we compare a state-of-the-art model from the literature with a proposed model. We show that bit streams of the 360◦, HDR, and fisheye video format can be estimated with a mean estimation error lower than 3.88% if the setups have the same coding bit depth. Furthermore, it is shown that on average, the energy demand for the decoding of bit streams with a bit depth of 10-bit is 55% higher than with 8-bit.\",\"PeriodicalId\":237809,\"journal\":{\"name\":\"2019 Picture Coding Symposium (PCS)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Picture Coding Symposium (PCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCS48520.2019.8954563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Picture Coding Symposium (PCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS48520.2019.8954563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extending Video Decoding Energy Models for 360° and HDR Video Formats in HEVC
Research has shown that decoder energy models are helpful tools for improving the energy efficiency in video playback applications. For example, an accurate feature-based bit stream model can reduce the energy consumption of the decoding process. However, until now only sequences of the SDR video format were investigated. Therefore, this paper shows that the decoding energy of HEVC-coded bit streams can be estimated precisely for different video formats and coding bit depths. Therefore, we compare a state-of-the-art model from the literature with a proposed model. We show that bit streams of the 360◦, HDR, and fisheye video format can be estimated with a mean estimation error lower than 3.88% if the setups have the same coding bit depth. Furthermore, it is shown that on average, the energy demand for the decoding of bit streams with a bit depth of 10-bit is 55% higher than with 8-bit.