{"title":"非紧黎曼流形上的热方程","authors":"A. Grigor’yan","doi":"10.1070/SM1992V072N01ABEH001410","DOIUrl":null,"url":null,"abstract":"The behavior of the Green function G(x, y, t) of the Cauchy problem for the heat equation on a connected, noncompact, complete Riemannian manifold is investigated. For manifolds with boundary it is assumed that the Green function satisfies a Neumann condition on the boundary.","PeriodicalId":208776,"journal":{"name":"Mathematics of The Ussr-sbornik","volume":"37 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"328","resultStr":"{\"title\":\"THE HEAT EQUATION ON NONCOMPACT RIEMANNIAN MANIFOLDS\",\"authors\":\"A. Grigor’yan\",\"doi\":\"10.1070/SM1992V072N01ABEH001410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The behavior of the Green function G(x, y, t) of the Cauchy problem for the heat equation on a connected, noncompact, complete Riemannian manifold is investigated. For manifolds with boundary it is assumed that the Green function satisfies a Neumann condition on the boundary.\",\"PeriodicalId\":208776,\"journal\":{\"name\":\"Mathematics of The Ussr-sbornik\",\"volume\":\"37 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"328\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of The Ussr-sbornik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1070/SM1992V072N01ABEH001410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-sbornik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/SM1992V072N01ABEH001410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 328
摘要
研究了热方程在连通非紧化完备黎曼流形上的柯西问题的格林函数G(x, y, t)的性质。对于有边界的流形,假定格林函数在边界上满足诺伊曼条件。
THE HEAT EQUATION ON NONCOMPACT RIEMANNIAN MANIFOLDS
The behavior of the Green function G(x, y, t) of the Cauchy problem for the heat equation on a connected, noncompact, complete Riemannian manifold is investigated. For manifolds with boundary it is assumed that the Green function satisfies a Neumann condition on the boundary.