非紧黎曼流形上的热方程

A. Grigor’yan
{"title":"非紧黎曼流形上的热方程","authors":"A. Grigor’yan","doi":"10.1070/SM1992V072N01ABEH001410","DOIUrl":null,"url":null,"abstract":"The behavior of the Green function G(x, y, t) of the Cauchy problem for the heat equation on a connected, noncompact, complete Riemannian manifold is investigated. For manifolds with boundary it is assumed that the Green function satisfies a Neumann condition on the boundary.","PeriodicalId":208776,"journal":{"name":"Mathematics of The Ussr-sbornik","volume":"37 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"328","resultStr":"{\"title\":\"THE HEAT EQUATION ON NONCOMPACT RIEMANNIAN MANIFOLDS\",\"authors\":\"A. Grigor’yan\",\"doi\":\"10.1070/SM1992V072N01ABEH001410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The behavior of the Green function G(x, y, t) of the Cauchy problem for the heat equation on a connected, noncompact, complete Riemannian manifold is investigated. For manifolds with boundary it is assumed that the Green function satisfies a Neumann condition on the boundary.\",\"PeriodicalId\":208776,\"journal\":{\"name\":\"Mathematics of The Ussr-sbornik\",\"volume\":\"37 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"328\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of The Ussr-sbornik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1070/SM1992V072N01ABEH001410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-sbornik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/SM1992V072N01ABEH001410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 328

摘要

研究了热方程在连通非紧化完备黎曼流形上的柯西问题的格林函数G(x, y, t)的性质。对于有边界的流形,假定格林函数在边界上满足诺伊曼条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
THE HEAT EQUATION ON NONCOMPACT RIEMANNIAN MANIFOLDS
The behavior of the Green function G(x, y, t) of the Cauchy problem for the heat equation on a connected, noncompact, complete Riemannian manifold is investigated. For manifolds with boundary it is assumed that the Green function satisfies a Neumann condition on the boundary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信