具有足够交换性的局部化中的构造算法

Johannes Hoffmann, V. Levandovskyy
{"title":"具有足够交换性的局部化中的构造算法","authors":"Johannes Hoffmann, V. Levandovskyy","doi":"10.1145/3208976.3209021","DOIUrl":null,"url":null,"abstract":"We continue the investigations of the constructivity of arithmetics within non-commutative Ore localizations, initiated in our 2017 ISSAC paper, where we have introduced monoidal, geometric and rational types of localizations of domains as objects of our studies. Here we extend this classification to rings with zero divisors and consider Ore sets of the mentioned types which are commutative enough: such a set either belongs to a commutative algebra or it is central or its elements commute pairwise. By using the systematic approach we have developed before, we prove that arithmetic within the localization of a commutative polynomial algebra is constructive and give the necessary algorithms. We also address the important question of computing the local closure of ideals which is also known as the desingularization. We provide algorithms to compute such closures for certain non-commutative rings with respect to Ore sets with enough commutativity.","PeriodicalId":105762,"journal":{"name":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Constructive Arithmetics in Ore Localizations with Enough Commutativity\",\"authors\":\"Johannes Hoffmann, V. Levandovskyy\",\"doi\":\"10.1145/3208976.3209021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We continue the investigations of the constructivity of arithmetics within non-commutative Ore localizations, initiated in our 2017 ISSAC paper, where we have introduced monoidal, geometric and rational types of localizations of domains as objects of our studies. Here we extend this classification to rings with zero divisors and consider Ore sets of the mentioned types which are commutative enough: such a set either belongs to a commutative algebra or it is central or its elements commute pairwise. By using the systematic approach we have developed before, we prove that arithmetic within the localization of a commutative polynomial algebra is constructive and give the necessary algorithms. We also address the important question of computing the local closure of ideals which is also known as the desingularization. We provide algorithms to compute such closures for certain non-commutative rings with respect to Ore sets with enough commutativity.\",\"PeriodicalId\":105762,\"journal\":{\"name\":\"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3208976.3209021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3208976.3209021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在2017年的ISSAC论文中,我们继续研究非交换矿定位中算法的构造性,在该论文中,我们引入了一元型、几何型和有理型域定位作为我们的研究对象。这里我们将这种分类扩展到零因子环,并考虑上述类型的足够交换的集合:这样的集合要么属于交换代数,要么是中心的,或者它的元素是成对交换的。利用系统的方法,证明了交换多项式代数局域内的算法是建设性的,并给出了必要的算法。我们还讨论了计算理想的局部闭合的重要问题,这也被称为去物质化。我们提供了关于具有足够交换性的Ore集合的某些非交换环的闭包计算算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constructive Arithmetics in Ore Localizations with Enough Commutativity
We continue the investigations of the constructivity of arithmetics within non-commutative Ore localizations, initiated in our 2017 ISSAC paper, where we have introduced monoidal, geometric and rational types of localizations of domains as objects of our studies. Here we extend this classification to rings with zero divisors and consider Ore sets of the mentioned types which are commutative enough: such a set either belongs to a commutative algebra or it is central or its elements commute pairwise. By using the systematic approach we have developed before, we prove that arithmetic within the localization of a commutative polynomial algebra is constructive and give the necessary algorithms. We also address the important question of computing the local closure of ideals which is also known as the desingularization. We provide algorithms to compute such closures for certain non-commutative rings with respect to Ore sets with enough commutativity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信