嵌入式视觉中多目标跟踪逼近的批量集成比较研究

Robert Nsinga, S. Karungaru, K. Terada
{"title":"嵌入式视觉中多目标跟踪逼近的批量集成比较研究","authors":"Robert Nsinga, S. Karungaru, K. Terada","doi":"10.1117/12.2589037","DOIUrl":null,"url":null,"abstract":"We present a series of adaptations in low probability distributions scenarios to detect and track multiple moving objects of interest. We investigate the benefits of the linearization of the loss trajectory1 in training neural networks, mainly addressing the lack of auto-differentiation in MOTA2 evaluations, and observe what characteristics can support parallelism3 and differential computation and to what extent these observations contributes to our objectives. Using benchmarks from DeepMOT4 and CenterNet,5 we highlight the use of sparsemax activations by mounting a finite number of independent, asynchronous detectors to augment performance and gain from compounded accuracy.∗ Empirical results show optimistic gains when applying parallelization on low-powered, low-latency embedded systems in cases where automatic differentiation is available.","PeriodicalId":295011,"journal":{"name":"International Conference on Quality Control by Artificial Vision","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A comparative study of batch ensemble for multi-object tracking approximations in embedded vision\",\"authors\":\"Robert Nsinga, S. Karungaru, K. Terada\",\"doi\":\"10.1117/12.2589037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a series of adaptations in low probability distributions scenarios to detect and track multiple moving objects of interest. We investigate the benefits of the linearization of the loss trajectory1 in training neural networks, mainly addressing the lack of auto-differentiation in MOTA2 evaluations, and observe what characteristics can support parallelism3 and differential computation and to what extent these observations contributes to our objectives. Using benchmarks from DeepMOT4 and CenterNet,5 we highlight the use of sparsemax activations by mounting a finite number of independent, asynchronous detectors to augment performance and gain from compounded accuracy.∗ Empirical results show optimistic gains when applying parallelization on low-powered, low-latency embedded systems in cases where automatic differentiation is available.\",\"PeriodicalId\":295011,\"journal\":{\"name\":\"International Conference on Quality Control by Artificial Vision\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Quality Control by Artificial Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2589037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Quality Control by Artificial Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2589037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一系列的适应在低概率分布的情况下,以检测和跟踪多个感兴趣的运动目标。我们研究了损失轨迹线性化在训练神经网络中的好处,主要解决了MOTA2评估中缺乏自分化的问题,并观察了哪些特征可以支持并行和微分计算,以及这些观察结果在多大程度上有助于我们的目标。通过使用DeepMOT4和CenterNet的基准测试,5我们强调了sparsemax激活的使用,通过安装有限数量的独立异步检测器来提高性能并从复合精度中获得收益。*经验结果显示,在自动微分可用的情况下,在低功耗、低延迟的嵌入式系统上应用并行化时,可以获得乐观的收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparative study of batch ensemble for multi-object tracking approximations in embedded vision
We present a series of adaptations in low probability distributions scenarios to detect and track multiple moving objects of interest. We investigate the benefits of the linearization of the loss trajectory1 in training neural networks, mainly addressing the lack of auto-differentiation in MOTA2 evaluations, and observe what characteristics can support parallelism3 and differential computation and to what extent these observations contributes to our objectives. Using benchmarks from DeepMOT4 and CenterNet,5 we highlight the use of sparsemax activations by mounting a finite number of independent, asynchronous detectors to augment performance and gain from compounded accuracy.∗ Empirical results show optimistic gains when applying parallelization on low-powered, low-latency embedded systems in cases where automatic differentiation is available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信