利用人类状态信息改进GPS采样

Athanasios Bamis, A. Savvides
{"title":"利用人类状态信息改进GPS采样","authors":"Athanasios Bamis, A. Savvides","doi":"10.1109/PERCOMW.2011.5766898","DOIUrl":null,"url":null,"abstract":"A large collection of mobile sensing applications depend on the knowledge of the user's whereabouts and are heavily based on GPS location measurements. Although knowledge of location is very desirable, in many mobile applications excessive GPS sampling is very energy taxing thus posing a barrier to application sustainability. To mitigate this problem, in this paper we examine how to reduce GPS sensing redundancies by extracting the state of a person and using it to drive GPS sampling on mobile phones. Using a GPS dataset we first describe how to extract the spatio-temporal states of the user. We then use the knowledge of the user's state to reduce GPS sampling rate, helping to make mobile applications more sustainable.","PeriodicalId":369430,"journal":{"name":"2011 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Exploiting human state information to improve GPS sampling\",\"authors\":\"Athanasios Bamis, A. Savvides\",\"doi\":\"10.1109/PERCOMW.2011.5766898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A large collection of mobile sensing applications depend on the knowledge of the user's whereabouts and are heavily based on GPS location measurements. Although knowledge of location is very desirable, in many mobile applications excessive GPS sampling is very energy taxing thus posing a barrier to application sustainability. To mitigate this problem, in this paper we examine how to reduce GPS sensing redundancies by extracting the state of a person and using it to drive GPS sampling on mobile phones. Using a GPS dataset we first describe how to extract the spatio-temporal states of the user. We then use the knowledge of the user's state to reduce GPS sampling rate, helping to make mobile applications more sustainable.\",\"PeriodicalId\":369430,\"journal\":{\"name\":\"2011 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PERCOMW.2011.5766898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERCOMW.2011.5766898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

大量的移动传感应用依赖于用户的位置信息,并在很大程度上基于GPS位置测量。虽然位置知识是非常需要的,但在许多移动应用中,过多的GPS采样是非常耗费能量的,因此对应用的可持续性构成了障碍。为了缓解这一问题,本文研究了如何通过提取人的状态并使用它来驱动手机上的GPS采样来减少GPS感知冗余。利用GPS数据集,我们首先描述了如何提取用户的时空状态。然后,我们使用用户状态的知识来降低GPS采样率,帮助使移动应用程序更具可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting human state information to improve GPS sampling
A large collection of mobile sensing applications depend on the knowledge of the user's whereabouts and are heavily based on GPS location measurements. Although knowledge of location is very desirable, in many mobile applications excessive GPS sampling is very energy taxing thus posing a barrier to application sustainability. To mitigate this problem, in this paper we examine how to reduce GPS sensing redundancies by extracting the state of a person and using it to drive GPS sampling on mobile phones. Using a GPS dataset we first describe how to extract the spatio-temporal states of the user. We then use the knowledge of the user's state to reduce GPS sampling rate, helping to make mobile applications more sustainable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信