量子力学的数学

J. Barrett
{"title":"量子力学的数学","authors":"J. Barrett","doi":"10.1093/oso/9780198844686.003.0003","DOIUrl":null,"url":null,"abstract":"Quantum mechanics is written in the language of linear algebra. On the Schrodinger picture the theory represents quantum-mechanical states using the elements of a Hilbert space and represents observable physical properties and the standard dynamics using the linear operators on the state space. We consider the mathematical notions for understanding and working with the standard formulation of quantum mechanics. Each mathematical notion is characterized geometrically, algebraically, and physically. The mathematical representation of quantum-mechanical superpositions is discussed.","PeriodicalId":139700,"journal":{"name":"The Conceptual Foundations of Quantum Mechanics","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Mathematics of Quantum Mechanics\",\"authors\":\"J. Barrett\",\"doi\":\"10.1093/oso/9780198844686.003.0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum mechanics is written in the language of linear algebra. On the Schrodinger picture the theory represents quantum-mechanical states using the elements of a Hilbert space and represents observable physical properties and the standard dynamics using the linear operators on the state space. We consider the mathematical notions for understanding and working with the standard formulation of quantum mechanics. Each mathematical notion is characterized geometrically, algebraically, and physically. The mathematical representation of quantum-mechanical superpositions is discussed.\",\"PeriodicalId\":139700,\"journal\":{\"name\":\"The Conceptual Foundations of Quantum Mechanics\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Conceptual Foundations of Quantum Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780198844686.003.0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Conceptual Foundations of Quantum Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198844686.003.0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

量子力学是用线性代数的语言写成的。在薛定谔图像上,该理论使用希尔伯特空间的元素来表示量子力学状态,并使用状态空间上的线性算子来表示可观察的物理性质和标准动力学。我们考虑理解和使用量子力学标准公式的数学概念。每个数学概念都具有几何、代数和物理特征。讨论了量子力学叠加态的数学表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Mathematics of Quantum Mechanics
Quantum mechanics is written in the language of linear algebra. On the Schrodinger picture the theory represents quantum-mechanical states using the elements of a Hilbert space and represents observable physical properties and the standard dynamics using the linear operators on the state space. We consider the mathematical notions for understanding and working with the standard formulation of quantum mechanics. Each mathematical notion is characterized geometrically, algebraically, and physically. The mathematical representation of quantum-mechanical superpositions is discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信