{"title":"一种快速、自适应噪声的粗糙模糊混合医学图像分割算法","authors":"A. Srivastava, Abhinav Asati, M. Bhattacharya","doi":"10.1109/BIBM.2010.5706602","DOIUrl":null,"url":null,"abstract":"An Accurate, Fast and Noise-Adaptive segmentation of Brain MR Images for clinical Analysis is a challenging problem. An improved Hybrid Clustering Algorithm is presented here, which integrates the concept of recently popularized Rough Sets and that of Fuzzy Sets. The concept of lower and upper approximations of rough sets is incorporated to handle uncertainty, vagueness, and incompleteness in class definition. For making the segmentation robust to Noise and intensity in-homogeneity, the images are proposed to be pre-processed with a neighbourhood averaging spatial filter. To accelerate the segmentation process, a novel Suppressed Rough Fuzzy C-Means model is presented in which a membership suppression mechanism has been implemented, which creates competition among clusters to speed-up the clustering process. The effectiveness of the presented algorithm along with comparison with other related algorithm has been demonstrated on a set of MR and CT scan images. The results using MRI data show that our method provides better results compared to standard Fuzzy C-Means based algorithms and other modified similar techniques.","PeriodicalId":275098,"journal":{"name":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A fast and noise-adaptive rough-fuzzy hybrid algorithm for medical image segmentation\",\"authors\":\"A. Srivastava, Abhinav Asati, M. Bhattacharya\",\"doi\":\"10.1109/BIBM.2010.5706602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An Accurate, Fast and Noise-Adaptive segmentation of Brain MR Images for clinical Analysis is a challenging problem. An improved Hybrid Clustering Algorithm is presented here, which integrates the concept of recently popularized Rough Sets and that of Fuzzy Sets. The concept of lower and upper approximations of rough sets is incorporated to handle uncertainty, vagueness, and incompleteness in class definition. For making the segmentation robust to Noise and intensity in-homogeneity, the images are proposed to be pre-processed with a neighbourhood averaging spatial filter. To accelerate the segmentation process, a novel Suppressed Rough Fuzzy C-Means model is presented in which a membership suppression mechanism has been implemented, which creates competition among clusters to speed-up the clustering process. The effectiveness of the presented algorithm along with comparison with other related algorithm has been demonstrated on a set of MR and CT scan images. The results using MRI data show that our method provides better results compared to standard Fuzzy C-Means based algorithms and other modified similar techniques.\",\"PeriodicalId\":275098,\"journal\":{\"name\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2010.5706602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2010.5706602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A fast and noise-adaptive rough-fuzzy hybrid algorithm for medical image segmentation
An Accurate, Fast and Noise-Adaptive segmentation of Brain MR Images for clinical Analysis is a challenging problem. An improved Hybrid Clustering Algorithm is presented here, which integrates the concept of recently popularized Rough Sets and that of Fuzzy Sets. The concept of lower and upper approximations of rough sets is incorporated to handle uncertainty, vagueness, and incompleteness in class definition. For making the segmentation robust to Noise and intensity in-homogeneity, the images are proposed to be pre-processed with a neighbourhood averaging spatial filter. To accelerate the segmentation process, a novel Suppressed Rough Fuzzy C-Means model is presented in which a membership suppression mechanism has been implemented, which creates competition among clusters to speed-up the clustering process. The effectiveness of the presented algorithm along with comparison with other related algorithm has been demonstrated on a set of MR and CT scan images. The results using MRI data show that our method provides better results compared to standard Fuzzy C-Means based algorithms and other modified similar techniques.