S. Crozier, H. Zhao, L. Forbes, B. Lawrence, D. Yau
{"title":"非对称MRI系统","authors":"S. Crozier, H. Zhao, L. Forbes, B. Lawrence, D. Yau","doi":"10.1109/ANZIIS.2001.974040","DOIUrl":null,"url":null,"abstract":"We have recently introduced the concept of asymmetric clinical MRI systems. The potential advantages of these systems include a reduced perception of claustrophobia by patients and better physician access to the patient. For asymmetric magnet systems to be useful as a clinical system, asymmetric shims and RF coils must be implemented, and in this work we describe new design methodologies for both.","PeriodicalId":383878,"journal":{"name":"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymmetric MRI systems\",\"authors\":\"S. Crozier, H. Zhao, L. Forbes, B. Lawrence, D. Yau\",\"doi\":\"10.1109/ANZIIS.2001.974040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have recently introduced the concept of asymmetric clinical MRI systems. The potential advantages of these systems include a reduced perception of claustrophobia by patients and better physician access to the patient. For asymmetric magnet systems to be useful as a clinical system, asymmetric shims and RF coils must be implemented, and in this work we describe new design methodologies for both.\",\"PeriodicalId\":383878,\"journal\":{\"name\":\"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANZIIS.2001.974040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANZIIS.2001.974040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We have recently introduced the concept of asymmetric clinical MRI systems. The potential advantages of these systems include a reduced perception of claustrophobia by patients and better physician access to the patient. For asymmetric magnet systems to be useful as a clinical system, asymmetric shims and RF coils must be implemented, and in this work we describe new design methodologies for both.