高性能集群系统日志中告警签名的交互式学习

A. Makanju, A. N. Zincir-Heywood, E. Milios
{"title":"高性能集群系统日志中告警签名的交互式学习","authors":"A. Makanju, A. N. Zincir-Heywood, E. Milios","doi":"10.1109/NOMS.2012.6211882","DOIUrl":null,"url":null,"abstract":"The ability to automatically discover error conditions with little human input is a feature lacking in most modern computer systems and networks. However, with the ever increasing size and complexity of modern systems, such a feature will become a necessity in the not too distant future. Our work proposes a hybrid framework that allows High Performance Clusters (HPC) to detect error conditions in their logs. Through the use of anomaly detection, the system is able to detect portions of the log that are likely to contain errors (anomalies). Via visualization, human administrators can inspect these anomalies and assign labels to clusters that correlate with error conditions. The system can then learn a signature from the confirmed anomalies, which it uses to detect future occurrences of the error condition. Our evaluations show the system is able to generate simple and accurate signatures using very little data.","PeriodicalId":364494,"journal":{"name":"2012 IEEE Network Operations and Management Symposium","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Interactive learning of alert signatures in High Performance Cluster system logs\",\"authors\":\"A. Makanju, A. N. Zincir-Heywood, E. Milios\",\"doi\":\"10.1109/NOMS.2012.6211882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ability to automatically discover error conditions with little human input is a feature lacking in most modern computer systems and networks. However, with the ever increasing size and complexity of modern systems, such a feature will become a necessity in the not too distant future. Our work proposes a hybrid framework that allows High Performance Clusters (HPC) to detect error conditions in their logs. Through the use of anomaly detection, the system is able to detect portions of the log that are likely to contain errors (anomalies). Via visualization, human administrators can inspect these anomalies and assign labels to clusters that correlate with error conditions. The system can then learn a signature from the confirmed anomalies, which it uses to detect future occurrences of the error condition. Our evaluations show the system is able to generate simple and accurate signatures using very little data.\",\"PeriodicalId\":364494,\"journal\":{\"name\":\"2012 IEEE Network Operations and Management Symposium\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Network Operations and Management Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NOMS.2012.6211882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Network Operations and Management Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NOMS.2012.6211882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在很少人工输入的情况下自动发现错误条件的能力是大多数现代计算机系统和网络所缺乏的功能。然而,随着现代系统的规模和复杂性的不断增加,这种特性在不久的将来将成为一种必需品。我们的工作提出了一个混合框架,允许高性能集群(HPC)在其日志中检测错误条件。通过使用异常检测,系统能够检测可能包含错误(异常)的日志部分。通过可视化,管理员可以检查这些异常情况,并为与错误条件相关的集群分配标签。然后,系统可以从已确认的异常中学习特征,用于检测错误情况的未来发生。我们的评估表明,该系统能够使用很少的数据生成简单而准确的签名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interactive learning of alert signatures in High Performance Cluster system logs
The ability to automatically discover error conditions with little human input is a feature lacking in most modern computer systems and networks. However, with the ever increasing size and complexity of modern systems, such a feature will become a necessity in the not too distant future. Our work proposes a hybrid framework that allows High Performance Clusters (HPC) to detect error conditions in their logs. Through the use of anomaly detection, the system is able to detect portions of the log that are likely to contain errors (anomalies). Via visualization, human administrators can inspect these anomalies and assign labels to clusters that correlate with error conditions. The system can then learn a signature from the confirmed anomalies, which it uses to detect future occurrences of the error condition. Our evaluations show the system is able to generate simple and accurate signatures using very little data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信