{"title":"Frobenius-Witt微分和正则性。","authors":"Takeshi Saito","doi":"10.2140/ant.2022.16.369","DOIUrl":null,"url":null,"abstract":"T. Dupuy, E. Katz, J. Rabinoff, D. Zureick-Brown introduced the module of total $p$-differentials for a ring over $Z/p^2Z$. We study the same construction for a ring over $Z_{(p)}$ and prove a regularity criterion. For a local ring, the tensor product with the residue field is constructed in a different way by O. Gabber, L. Ramero. In another article arXiv:2006.00448, we use the sheaf of FW-differentials to define the cotangent bundle and the micro-support of an etale sheaf.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Frobenius-Witt differentials and regularity.\",\"authors\":\"Takeshi Saito\",\"doi\":\"10.2140/ant.2022.16.369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"T. Dupuy, E. Katz, J. Rabinoff, D. Zureick-Brown introduced the module of total $p$-differentials for a ring over $Z/p^2Z$. We study the same construction for a ring over $Z_{(p)}$ and prove a regularity criterion. For a local ring, the tensor product with the residue field is constructed in a different way by O. Gabber, L. Ramero. In another article arXiv:2006.00448, we use the sheaf of FW-differentials to define the cotangent bundle and the micro-support of an etale sheaf.\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2022.16.369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/ant.2022.16.369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
摘要
T. Dupuy, E. Katz, J. Rabinoff, D. Zureick-Brown引入了$Z/p^2Z$上环的总$p$微分模。我们研究了$Z_{(p)}$上的环的相同构造,并证明了一个正则性准则。对于局部环,O. Gabber, L. Ramero用不同的方法构造了张量积与剩余场。在另一篇文章[xiv:2006.00448]中,我们用w -微分束定义了一个函数束的共切束和微支撑。
T. Dupuy, E. Katz, J. Rabinoff, D. Zureick-Brown introduced the module of total $p$-differentials for a ring over $Z/p^2Z$. We study the same construction for a ring over $Z_{(p)}$ and prove a regularity criterion. For a local ring, the tensor product with the residue field is constructed in a different way by O. Gabber, L. Ramero. In another article arXiv:2006.00448, we use the sheaf of FW-differentials to define the cotangent bundle and the micro-support of an etale sheaf.