大型共享内存计算机中减少同步开销外推方法的混合并行实现

Matthias Korch, T. Rauber, C. Scholtes
{"title":"大型共享内存计算机中减少同步开销外推方法的混合并行实现","authors":"Matthias Korch, T. Rauber, C. Scholtes","doi":"10.1109/ICPADS.2010.12","DOIUrl":null,"url":null,"abstract":"Extrapolation methods belong to the class of one-step methods for the solution of systems of ordinary differential equations (ODEs). In this paper, we present parallel implementation variants of extrapolation methods for large shared-memory computer systems which exploit pure data parallelism or mixed task and data parallelism and make use of different load balancing strategies and different loop structures. In addition to general implementation variants suitable for ODE systems with arbitrary access structure, we devise specialized implementation variants which exploit the specific access structure of a large class of ODE systems to reduce synchronization costs and to improve the locality of memory references. We analyze and compare the scalability and the locality behavior of the implementation variants on an SGI Altix 4700 using up to 500 threads.","PeriodicalId":365914,"journal":{"name":"2010 IEEE 16th International Conference on Parallel and Distributed Systems","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mixed-Parallel Implementations of Extrapolation Methods with Reduced Synchronization Overhead for Large Shared-Memory Computers\",\"authors\":\"Matthias Korch, T. Rauber, C. Scholtes\",\"doi\":\"10.1109/ICPADS.2010.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extrapolation methods belong to the class of one-step methods for the solution of systems of ordinary differential equations (ODEs). In this paper, we present parallel implementation variants of extrapolation methods for large shared-memory computer systems which exploit pure data parallelism or mixed task and data parallelism and make use of different load balancing strategies and different loop structures. In addition to general implementation variants suitable for ODE systems with arbitrary access structure, we devise specialized implementation variants which exploit the specific access structure of a large class of ODE systems to reduce synchronization costs and to improve the locality of memory references. We analyze and compare the scalability and the locality behavior of the implementation variants on an SGI Altix 4700 using up to 500 threads.\",\"PeriodicalId\":365914,\"journal\":{\"name\":\"2010 IEEE 16th International Conference on Parallel and Distributed Systems\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 16th International Conference on Parallel and Distributed Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPADS.2010.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 16th International Conference on Parallel and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS.2010.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

外推法属于求解常微分方程组的一步法。本文提出了针对大型共享内存计算机系统的外推方法的并行实现变体,这些外推方法利用纯数据并行性或混合任务和数据并行性,并利用不同的负载平衡策略和不同的循环结构。除了适用于具有任意访问结构的ODE系统的通用实现变体外,我们还设计了专门的实现变体,利用大量ODE系统的特定访问结构来降低同步成本并改善内存引用的局部性。我们分析和比较了SGI Altix 4700上使用多达500个线程的实现变体的可伸缩性和局部性行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mixed-Parallel Implementations of Extrapolation Methods with Reduced Synchronization Overhead for Large Shared-Memory Computers
Extrapolation methods belong to the class of one-step methods for the solution of systems of ordinary differential equations (ODEs). In this paper, we present parallel implementation variants of extrapolation methods for large shared-memory computer systems which exploit pure data parallelism or mixed task and data parallelism and make use of different load balancing strategies and different loop structures. In addition to general implementation variants suitable for ODE systems with arbitrary access structure, we devise specialized implementation variants which exploit the specific access structure of a large class of ODE systems to reduce synchronization costs and to improve the locality of memory references. We analyze and compare the scalability and the locality behavior of the implementation variants on an SGI Altix 4700 using up to 500 threads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信