{"title":"分类中的高维特征选择:一种长度自适应进化方法","authors":"Junhai Zhou, Jian-chun Lu, Quanwang Wu, Junhao Wen","doi":"10.1109/ICNSC55942.2022.10004048","DOIUrl":null,"url":null,"abstract":"Feature selection is an essential technique which has been widely applied in data mining. Recent research has shown that a good feature subset can be obtained by using evolutionary computing (EC) approaches as a wrapper. However, most feature selection methods based on EC use a fixed-length encoding to represent feature subsets. When this fixed length representation is applied to high-dimensional data, it requires a large amount of memory space as well as a high computational cost. Moreover, this representation is inflexible and may limit the performance of EC because of a too huge search space. In this paper, we propose an Adaptive- Variable-Length Genetic Algorithm (A VLGA), which adopts a variable-length individual encoding and enables individuals with different lengths in a population to evolve in their own search space. An adaptive length changing mechanism is introduced which can extend or shorten an individual to guide it to explore in a better search space. Thus, A VLGA is able to adaptively concentrate on a smaller but more fruitful search space and yield better solutions more quickly. Experimental results on 6 high-dimensional datasets reveal that A VLGA performs significantly better than existing methods.","PeriodicalId":230499,"journal":{"name":"2022 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-dimensional Feature Selection in Classification: A Length-Adaptive Evolutionary Approach\",\"authors\":\"Junhai Zhou, Jian-chun Lu, Quanwang Wu, Junhao Wen\",\"doi\":\"10.1109/ICNSC55942.2022.10004048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature selection is an essential technique which has been widely applied in data mining. Recent research has shown that a good feature subset can be obtained by using evolutionary computing (EC) approaches as a wrapper. However, most feature selection methods based on EC use a fixed-length encoding to represent feature subsets. When this fixed length representation is applied to high-dimensional data, it requires a large amount of memory space as well as a high computational cost. Moreover, this representation is inflexible and may limit the performance of EC because of a too huge search space. In this paper, we propose an Adaptive- Variable-Length Genetic Algorithm (A VLGA), which adopts a variable-length individual encoding and enables individuals with different lengths in a population to evolve in their own search space. An adaptive length changing mechanism is introduced which can extend or shorten an individual to guide it to explore in a better search space. Thus, A VLGA is able to adaptively concentrate on a smaller but more fruitful search space and yield better solutions more quickly. Experimental results on 6 high-dimensional datasets reveal that A VLGA performs significantly better than existing methods.\",\"PeriodicalId\":230499,\"journal\":{\"name\":\"2022 IEEE International Conference on Networking, Sensing and Control (ICNSC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Networking, Sensing and Control (ICNSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNSC55942.2022.10004048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC55942.2022.10004048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-dimensional Feature Selection in Classification: A Length-Adaptive Evolutionary Approach
Feature selection is an essential technique which has been widely applied in data mining. Recent research has shown that a good feature subset can be obtained by using evolutionary computing (EC) approaches as a wrapper. However, most feature selection methods based on EC use a fixed-length encoding to represent feature subsets. When this fixed length representation is applied to high-dimensional data, it requires a large amount of memory space as well as a high computational cost. Moreover, this representation is inflexible and may limit the performance of EC because of a too huge search space. In this paper, we propose an Adaptive- Variable-Length Genetic Algorithm (A VLGA), which adopts a variable-length individual encoding and enables individuals with different lengths in a population to evolve in their own search space. An adaptive length changing mechanism is introduced which can extend or shorten an individual to guide it to explore in a better search space. Thus, A VLGA is able to adaptively concentrate on a smaller but more fruitful search space and yield better solutions more quickly. Experimental results on 6 high-dimensional datasets reveal that A VLGA performs significantly better than existing methods.