面向低功耗图像处理的区域高效共享突触细胞神经网络

Jinwook Oh, Seungjin Lee, Joo-Young Kim, H. Yoo
{"title":"面向低功耗图像处理的区域高效共享突触细胞神经网络","authors":"Jinwook Oh, Seungjin Lee, Joo-Young Kim, H. Yoo","doi":"10.1109/VDAT.2009.5158148","DOIUrl":null,"url":null,"abstract":"This paper presents an area and power efficient cellular neural network (CNN) that enables real-time image processing. The proposed shared synapse architecture halves the number of required synapse multipliers, which are the main contributor to area and power consumption of CNNs. For this, a current holder circuit is used to sample and hold the currents of non-changing synaptic circuit outputs. Compared to the conventional architecture of CNNs, power and area are reduced by 46% and 41%, respectively.","PeriodicalId":246670,"journal":{"name":"2009 International Symposium on VLSI Design, Automation and Test","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An area efficient shared synapse cellular neural network for low power image processing\",\"authors\":\"Jinwook Oh, Seungjin Lee, Joo-Young Kim, H. Yoo\",\"doi\":\"10.1109/VDAT.2009.5158148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an area and power efficient cellular neural network (CNN) that enables real-time image processing. The proposed shared synapse architecture halves the number of required synapse multipliers, which are the main contributor to area and power consumption of CNNs. For this, a current holder circuit is used to sample and hold the currents of non-changing synaptic circuit outputs. Compared to the conventional architecture of CNNs, power and area are reduced by 46% and 41%, respectively.\",\"PeriodicalId\":246670,\"journal\":{\"name\":\"2009 International Symposium on VLSI Design, Automation and Test\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Symposium on VLSI Design, Automation and Test\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VDAT.2009.5158148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Symposium on VLSI Design, Automation and Test","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VDAT.2009.5158148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种面积和功率效率高的细胞神经网络(CNN),可以实现实时图像处理。所提出的共享突触架构将所需的突触乘法器数量减半,而突触乘法器是影响cnn面积和功耗的主要因素。为此,电流保持电路用于采样和保持不变的突触电路输出的电流。与传统的cnn架构相比,功耗和面积分别降低了46%和41%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An area efficient shared synapse cellular neural network for low power image processing
This paper presents an area and power efficient cellular neural network (CNN) that enables real-time image processing. The proposed shared synapse architecture halves the number of required synapse multipliers, which are the main contributor to area and power consumption of CNNs. For this, a current holder circuit is used to sample and hold the currents of non-changing synaptic circuit outputs. Compared to the conventional architecture of CNNs, power and area are reduced by 46% and 41%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信