基于人工神经网络的无线局域网三波段微带贴片天线设计

Jing Rui Wang, W. Liu, M. Tong
{"title":"基于人工神经网络的无线局域网三波段微带贴片天线设计","authors":"Jing Rui Wang, W. Liu, M. Tong","doi":"10.1109/NEMO49486.2020.9343490","DOIUrl":null,"url":null,"abstract":"With the development of communication system, multi-band antenna becomes more and more significant. In this paper, a triple-band microstrip patch antenna using artificial neural network techniques to optimize working bandwidth is proposed. The antenna is mainly composed of two metal patches and FR4 substrate. Three operating bands with the center frequency of 1.52 GHz (1.47 1.57 GHz), 2.46 GHz (2.43 2.48 GHz) and 2.79 GHz (2.78 2.81 GHz). Artificial neural network (ANN) model is trained and tested to optimize the bandwidth of the antenna, the simulation software HFSS is used to obtain 162 data sets of proposed antenna with four parameters related to patch dimension and substrate materials. According to the final test results, the average percentage error was within the acceptable range. The antenna also performs well in terms of gain. The antenna can be effectively used for WLAN applications.","PeriodicalId":305562,"journal":{"name":"2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Artificial Neural Network Based Design of Triple-Band Microstrip Patch Antenna for WLAN Applications\",\"authors\":\"Jing Rui Wang, W. Liu, M. Tong\",\"doi\":\"10.1109/NEMO49486.2020.9343490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of communication system, multi-band antenna becomes more and more significant. In this paper, a triple-band microstrip patch antenna using artificial neural network techniques to optimize working bandwidth is proposed. The antenna is mainly composed of two metal patches and FR4 substrate. Three operating bands with the center frequency of 1.52 GHz (1.47 1.57 GHz), 2.46 GHz (2.43 2.48 GHz) and 2.79 GHz (2.78 2.81 GHz). Artificial neural network (ANN) model is trained and tested to optimize the bandwidth of the antenna, the simulation software HFSS is used to obtain 162 data sets of proposed antenna with four parameters related to patch dimension and substrate materials. According to the final test results, the average percentage error was within the acceptable range. The antenna also performs well in terms of gain. The antenna can be effectively used for WLAN applications.\",\"PeriodicalId\":305562,\"journal\":{\"name\":\"2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMO49486.2020.9343490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMO49486.2020.9343490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着通信系统的发展,多波段天线的应用变得越来越重要。本文提出了一种利用人工神经网络技术优化工作带宽的三波段微带贴片天线。天线主要由两个金属贴片和FR4衬底组成。三个工作频段,中心频率为1.52 GHz (1.47 1.57 GHz)、2.46 GHz (2.43 2.48 GHz)和2.79 GHz (2.78 2.81 GHz)。对人工神经网络(ANN)模型进行了训练和测试,以优化天线的带宽,利用HFSS仿真软件获得了162个数据集,其中包含与贴片尺寸和衬底材料相关的4个参数。根据最终测试结果,平均百分比误差在可接受范围内。该天线在增益方面也表现良好。该天线可以有效地用于WLAN应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Artificial Neural Network Based Design of Triple-Band Microstrip Patch Antenna for WLAN Applications
With the development of communication system, multi-band antenna becomes more and more significant. In this paper, a triple-band microstrip patch antenna using artificial neural network techniques to optimize working bandwidth is proposed. The antenna is mainly composed of two metal patches and FR4 substrate. Three operating bands with the center frequency of 1.52 GHz (1.47 1.57 GHz), 2.46 GHz (2.43 2.48 GHz) and 2.79 GHz (2.78 2.81 GHz). Artificial neural network (ANN) model is trained and tested to optimize the bandwidth of the antenna, the simulation software HFSS is used to obtain 162 data sets of proposed antenna with four parameters related to patch dimension and substrate materials. According to the final test results, the average percentage error was within the acceptable range. The antenna also performs well in terms of gain. The antenna can be effectively used for WLAN applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信