使用Voronoi分区的多代理系统的部署和搜索策略

K. Guruprasad, Debasish Ghose
{"title":"使用Voronoi分区的多代理系统的部署和搜索策略","authors":"K. Guruprasad, Debasish Ghose","doi":"10.1109/ISVD.2007.15","DOIUrl":null,"url":null,"abstract":"In this paper we analyze a deploy and search strategy for multi-agent systems. Mobile agents equipped with sensors carry out search operation in the search space. The lack of information about the search space is modeled as an uncertainty density distribution over the space, and is assumed to be known to the agents a priori. In each step, the agents deploy themselves in an optimal way so as to maximize per step reduction in the uncertainty density. We analyze the proposed strategy for convergence and spatial distributedness. The control law moving the agents has been analyzed for stability and convergence using LaSalle's in- variance principle, and for spatial distributedness under a few realistic constraints on the control input such as constant speed, limit on maximum speed, and also sensor range limits. The simulation experiments show that the strategy successfully reduces the average uncertainty density below the required level.","PeriodicalId":148710,"journal":{"name":"4th International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2007)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Deploy and Search Strategy for Multi-agent systems using Voronoi partitions\",\"authors\":\"K. Guruprasad, Debasish Ghose\",\"doi\":\"10.1109/ISVD.2007.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we analyze a deploy and search strategy for multi-agent systems. Mobile agents equipped with sensors carry out search operation in the search space. The lack of information about the search space is modeled as an uncertainty density distribution over the space, and is assumed to be known to the agents a priori. In each step, the agents deploy themselves in an optimal way so as to maximize per step reduction in the uncertainty density. We analyze the proposed strategy for convergence and spatial distributedness. The control law moving the agents has been analyzed for stability and convergence using LaSalle's in- variance principle, and for spatial distributedness under a few realistic constraints on the control input such as constant speed, limit on maximum speed, and also sensor range limits. The simulation experiments show that the strategy successfully reduces the average uncertainty density below the required level.\",\"PeriodicalId\":148710,\"journal\":{\"name\":\"4th International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2007)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"4th International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVD.2007.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVD.2007.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文分析了多智能体系统的部署和搜索策略。配备传感器的移动代理在搜索空间内进行搜索操作。关于搜索空间的信息缺乏被建模为空间上的不确定性密度分布,并且被假设为智能体先验地知道。在每一步中,智能体以最优的方式进行自我部署,以最大限度地减少每一步的不确定性密度。我们分析了所提出的策略的收敛性和空间分布性。利用LaSalle变方差原理分析了移动agent的控制律的稳定性和收敛性,并分析了控制律在恒速度、最大速度限制和传感器距离限制等控制输入条件下的空间分布性。仿真实验表明,该策略成功地将平均不确定性密度降低到要求的水平以下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deploy and Search Strategy for Multi-agent systems using Voronoi partitions
In this paper we analyze a deploy and search strategy for multi-agent systems. Mobile agents equipped with sensors carry out search operation in the search space. The lack of information about the search space is modeled as an uncertainty density distribution over the space, and is assumed to be known to the agents a priori. In each step, the agents deploy themselves in an optimal way so as to maximize per step reduction in the uncertainty density. We analyze the proposed strategy for convergence and spatial distributedness. The control law moving the agents has been analyzed for stability and convergence using LaSalle's in- variance principle, and for spatial distributedness under a few realistic constraints on the control input such as constant speed, limit on maximum speed, and also sensor range limits. The simulation experiments show that the strategy successfully reduces the average uncertainty density below the required level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信